A275536 Differences of the exponents of the adjacent distinct powers of 2 in the binary representation of n (with -1 subtracted from the least exponent present) are concatenated as decimal digits in reverse order.
1, 2, 11, 3, 12, 21, 111, 4, 13, 22, 112, 31, 121, 211, 1111, 5, 14, 23, 113, 32, 122, 212, 1112, 41, 131, 221, 1121, 311, 1211, 2111, 11111, 6, 15, 24, 114, 33, 123, 213, 1113, 42, 132, 222, 1122, 312, 1212, 2112, 11112
Offset: 1
Examples
5 = 2^2 + 2^0, so the representation is [2-0, 0-(-1)] = [2, 1] so a(5) = 12. 6 = 2^2 + 2^1, so the representation is [2-1, 1-(-1)] = [1, 2] so a(6) = 21. 18 = 2^4 + 2^1, so the representation is [4-1, 1-(-1)] = [3, 2] so a(18) = 23.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..511
Programs
-
PARI
a(n)=my(v=List(),k); while(n, k=valuation(n,2)+1; n>>=k; listput(v,k)); fromdigits(Vec(v)) \\ Charles R Greathouse IV, Aug 02 2016
-
PHP
function dec2delta($k) { $p = -1; while ($k > 0) { $k -= $c = pow(2, floor(log($k, 2))); if ($p > -1) $d[] = $p - floor(log($c, 2)); $p = floor(log($c, 2)); } $d[] = $p + 1; return array_reverse($d); } function delta2dec($d) { $k = 0; $e = -1; foreach ($d AS $v) { if ($v > 0) { $e += $v; $k += pow(2, $e); } } return $k; }
Formula
For n=1..511, a(n) = A004086(A004719(A071160(n))) [In other words, terms of A071160 with 0-digits deleted and the remaining digits reversed.] - Antti Karttunen, Sep 03 2016
Comments