A258055 Concatenation of the decimal representations of the lengths (increased by 1) of the runs of zeros between successive ones in the binary representation of n.
0, 0, 0, 1, 0, 2, 1, 11, 0, 3, 2, 21, 1, 12, 11, 111, 0, 4, 3, 31, 2, 22, 21, 211, 1, 13, 12, 121, 11, 112, 111, 1111, 0, 5, 4, 41, 3, 32, 31, 311, 2, 23, 22, 221, 21, 212, 211, 2111, 1, 14, 13, 131, 12, 122, 121, 1211, 11, 113, 112, 1121, 111, 1112, 1111
Offset: 0
Examples
Example for n=6: binary 110 => split into 10^m components: 1 (10^0) and 10 (10^1) => 1; the least significant bit, and thus the whole last component, here 10, is discarded. 840 in binary is 1100101000. The runs of zeros between successive ones have length 0, 2 and 1, hence a(840) = 132. - _Giovanni Resta_, Aug 31 2015
Links
- A. Strazds, The Golden Book [broken link]
Programs
-
Mathematica
a[0] = 0; a[n_] := FromDigits@ Flatten[ IntegerDigits /@ Most[ Length /@ (Split[ Flatten[ IntegerDigits[n, 2] /. 1 -> {1, 0}]][[2 ;; ;; 2]]) ]]; Table[a@ n, {n, 0, 100}] (* Giovanni Resta, Aug 31 2015 *)
-
PHP
function dec2zi ($d) { $b = base_convert($d, 10, 2); $b = str_split($b); $i = $z = 0; $r = ""; foreach($b as $v) { if (!$v) { $i++; } else { if ($i > 0) { $r .= $i + $v; $i = 0; } else { if ($z > 0) { $r .= $v; $z = 0; } $z++; }}} return $r == "" ? 0 : $r; }
Comments