cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Barry E. Williams

Barry E. Williams's wiki page.

Barry E. Williams has authored 175 sequences. Here are the ten most recent ones:

A056854 a(n) = Lucas(4*n).

Original entry on oeis.org

2, 7, 47, 322, 2207, 15127, 103682, 710647, 4870847, 33385282, 228826127, 1568397607, 10749957122, 73681302247, 505019158607, 3461452808002, 23725150497407, 162614600673847, 1114577054219522, 7639424778862807, 52361396397820127, 358890350005878082, 2459871053643326447
Offset: 0

Author

Barry E. Williams, Aug 29 2000

Keywords

Comments

a(n) and b(n) := A004187(n) are the nonnegative proper and improper solutions of the Pell equation a(n)^2 - 5*(3*b(n))^2 = +4. See the cross-reference to A004187 below. - Wolfdieter Lang, Jun 26 2013
Lucas numbers of the form n^2-2. - Michel Lagneau, Aug 11 2014

Examples

			Pell equation: n = 0, 2^2 - 45*0^2 = +4 (improper);  n = 1, 7^2 - 5*(3*1)^2 = +4; n=2, 47^2 - 5*(3*7)^2 = +4. - _Wolfdieter Lang_, Jun 26 2013
		

References

  • R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

Crossrefs

Cf. quadrisection of A000032: this sequence (first), A056914 (second), A246453 (third, without 11), A288913 (fourth).
Cf. Lucas(k*n): A000032 (k = 1), A005248 (k = 2), A014448 (k = 3), A001946 (k = 5), A087215 (k = 6), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12).

Programs

  • Magma
    [Lucas(4*n): n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
  • Mathematica
    a[0] = 2; a[1] = 7; a[n_] := 7a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 19}] (* Robert G. Wilson v, Jan 30 2004 *)
    LinearRecurrence[{7,-1},{2,7},25] (* or *) LucasL[4*Range[0,25]] (* Harvey P. Dale, Aug 08 2011 *)
  • PARI
    a(n)=if(n<0,0,polsym(1-7*x+x^2,n)[n+1])
    
  • PARI
    a(n)=if(n<0,0,2*subst(poltchebi(n),x,7/2))
    
  • Sage
    [lucas_number2(n,7,1) for n in range(27)] #Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = 7*a(n-1) - a(n-2) with a(0)=2, a(1)=7.
a(n) = A000032(4*n), where A000032 = Lucas numbers.
a(n) = 7*S(n-1, 7) - 2*S(n-2, 7) = S(n, 7) - S(n-2, 7) = 2*T(n, 7/2), with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. U(n, x), resp. T(n, x), are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 7) = A004187(n), n>=0. See A049310 and A053120.
a(n) = ((7+sqrt(45))/2)^n + ((7-sqrt(45))/2)^n.
G.f.: (2-7x)/(1-7x+x^2).
a(n) = A005248(2*n); bisection of A005248.
a(n) = Fibonacci(8*n)/Fibonacci(4*n), n>0. - Gary Detlefs, Dec 26 2010
a(n) = 2 + 5*Fibonacci(2*n)^2 = 2 + 5*A049684(n), n >= 0. This is in Koshy's book (reference under A065563) 15. on p. 88. Compare with the above Chebyshev T formula. - Wolfdieter Lang, Aug 27 2012
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n = 0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(7 - 3*sqrt(5)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.14242 42709 40138 85949 ... = 2 + 1/(7 + 1/(47 + 1/(322 + ...))).
Also F(-alpha) = 0.85670 72882 04563 14901 ... has the continued fraction representation 1 - 1/(7 - 1/(47 - 1/(322 - ...))) and the simple continued fraction expansion 1/(1 + 1/((7-2) + 1/(1 + 1/((47-2) + 1/(1 + 1/((322-2) + 1/(1 + ...))))))). Cf. A005248.
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((7^2-4) + 1/(1 + 1/((47^2-4) + 1/(1 + 1/((322^2-4) + 1/(1 + ...))))))).
Added Oct 13 2019: 1/2 + (1/2)*F(alpha)/F(-alpha) = 1.16675297774947414828... has the simple continued fraction expansion 1 + 1/((7 - 2) + 1/(1 + 1/((322 - 2) + 1/(1 + 1/(15127 - 2) + 1/(1 + ...))))). (End)
a(n) = Fibonacci(4*n+2) - Fibonacci(4*n-2), where Fibonacci(-2) = -1. - Bruno Berselli, May 25 2015
a(n) = sqrt(45*(A004187(n))^2+4).
From Peter Bala, Oct 13 2019: (Start)
a(n) = F(4*n+4)/F(4) - F(4*n-4)/F(4) = A004187(n+1) - A004187(n-1).
a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^4 = [2, 3; 3, 5].
Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) (mod p^k) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution).
5*Sum_{n >= 1} 1/(a(n) - 9/a(n)) = 1: (9 = Lucas(4)+2 and 5 = Lucas(4)-2)
9*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 5/a(n)) = 1.
Sum_{n >= 1} 1/a(n) = (1/4)*( theta_3((7-3*sqrt(5))/2)^2 - 1 ), where theta_3(q) = 1 + 2*Sum_{n >= 1} q^n^2. Cf. A153415.
Sum_{n >= 1} (-1)^(n+1)/a(n) = (1/4)*( 1 - theta_3((3*sqrt(5)-7)/2)^2 ).
x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 7*x^2 + 48*x^3 + 329*x^4 + ... is the o.g.f. for A004187. (End)
E.g.f.: 2*exp(7*x/2)*cosh(3*sqrt(5)*x/2). - Stefano Spezia, Oct 18 2019
a(2k+1)/7 is the numerator of the continued fraction [3*sqrt(5), 3*sqrt(5), ..., 3*sqrt(5)] with 2k copies of 3*sqrt(5), for k>0. - Greg Dresden and Tracy Z. Wu, Sep 10 2020
a(n) = Sum_{k>=1} Lucas(2*n*k)/(Lucas(2*n)^k). - Diego Rattaggi, Jan 20 2025

Extensions

More terms from James Sellers, Aug 31 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A056918 a(n) = 9*a(n-1)-a(n-2); a(0)=2, a(1)=9.

Original entry on oeis.org

2, 9, 79, 702, 6239, 55449, 492802, 4379769, 38925119, 345946302, 3074591599, 27325378089, 242853811202, 2158358922729, 19182376493359, 170483029517502, 1515164889164159, 13466000972959929, 119678843867475202
Offset: 0

Author

Barry E. Williams, Aug 21 2000

Keywords

Comments

All nonnegative integer solutions of Pell equation a(n)^2 - 77*b(n)^2 = +4 together with b(n)=A018913(n), n>=0. - Wolfdieter Lang, Aug 31 2004
Except for the first term, positive values of x (or y) satisfying x^2 - 9xy + y^2 + 77 = 0. - Colin Barker, Feb 13 2014

Crossrefs

Cf. A018913. a(n)=sqrt(77*A018913(n)^2 + 4). A005248.

Programs

  • Haskell
    a056918 n = a056918_list !! n
    a056918_list = 2 : 9 :
       zipWith (-) (map (* 9) $ tail a056918_list) a056918_list
    -- Reinhard Zumkeller, Jan 06 2013
  • Mathematica
    a[0] = 2; a[1] = 9; a[n_] := 9a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 17}] (* Robert G. Wilson v, Jan 30 2004 *)
  • Sage
    [lucas_number2(n,9,1) for n in range(23)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = 9*S(n-1, 9) - 2*S(n-2, 9) = S(n, 9) - S(n-2, 9) = 2*T(n, 9/2), with S(n, x) := U(n, x/2) (see A049310), S(-1, x) := 0, S(-2, x) := -1. S(n-1, 9)=A018913(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, kind.
a(n) = {9*[((9+sqrt(77))/2)^n - ((9-sqrt(77))/2)^n] - 2*[((9+sqrt(77))/2)^(n-1) - ((9-sqrt(77))/2)^(n-1)]}/sqrt(77).
G.f.: (2-9*x)/(1-9*x+x^2).
a(n) = ap^n + am^n, with ap := (9+sqrt(77))/2 and am := (9-sqrt(77))/2.
G.f.: (2-9*x)/(1-9*x+x^2). - Philippe Deléham, Nov 03 2008
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = product {n = 0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(9 - sqrt(77)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.11095 50589 89701 91909 ... = 2 + 1/(9 + 1/(79 + 1/(702 + ...))).
Also F(-alpha) = 0.88873 23915 40314 47623 ... has the continued fraction representation 1 - 1/(9 - 1/(79 - 1/(702 - ...))) and the simple continued fraction expansion 1/(1 + 1/((9-2) + 1/(1 + 1/((79-2) + 1/(1 + 1/((702-2) + 1/(1 + ...))))))). F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((9^2-4) + 1/(1 + 1/((79^2-4) + 1/(1 + 1/((702^2-4) + 1/(1 + ...))))))). Cf. A005248.
(End)

Extensions

More terms from James Sellers, Sep 07 2000
Chebyshev comments from Wolfdieter Lang, Oct 31 2002

A056115 a(n) = n*(n+11)/2.

Original entry on oeis.org

0, 6, 13, 21, 30, 40, 51, 63, 76, 90, 105, 121, 138, 156, 175, 195, 216, 238, 261, 285, 310, 336, 363, 391, 420, 450, 481, 513, 546, 580, 615, 651, 688, 726, 765, 805, 846, 888, 931, 975, 1020, 1066, 1113, 1161, 1210, 1260, 1311, 1363, 1416, 1470, 1525
Offset: 0

Author

Barry E. Williams, Jul 04 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Third column of Pascal (1, 6) triangle A096956.

Programs

  • GAP
    List([0..50], n-> n*(n+11)/2 ); # G. C. Greubel, Jan 18 2020
  • Magma
    [n*(n+11)/2: n in [0..50]]; // G. C. Greubel, Jan 18 2020
    
  • Mathematica
    ((2*Range[0,50]+11)^2 -11^2)/8 (* G. C. Greubel, Jan 18 2020 *)
  • PARI
    a(n)=n*(n+11)/2; \\ Joerg Arndt, Oct 25 2014
    
  • Sage
    [n*(n+11)/2 for n in (0..50)] # G. C. Greubel, Jan 18 2020
    

Formula

G.f.: x*(6-5*x)/(1-x)^3.
a(n) = A000096(n) + 4*A001477(n) = A056000(n) + A001477(n) = A056119(n) - A001477(n). - Zerinvary Lajos, Oct 01 2006
a(n) = A126890(n,5) for n>4. - Reinhard Zumkeller, Dec 30 2006
Equals A119412/2. - Zerinvary Lajos, Feb 12 2007
If we define f(n,i,a) = Sum_{k=0..n-i} ( binomial(n,k)*stirling1(n-k,i) *Product_{j=0..k-1} (-a-j) ), then a(n) = -f(n,n-1,6), for n>=1. - Milan Janjic, Dec 20 2008
a(n) = a(n-1) + n + 5 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
Sum_{n>=1} 1/a(n) = 83711/152460. - R. J. Mathar, Jul 14 2012
a(n) = 6*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
E.g.f.: x*(12 + x)*exp(x)/2. - G. C. Greubel, Jan 18 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/11 - 20417/152460. - Amiram Eldar, Jan 10 2021

A056118 a(n) = (11*n+5)*(n+4)*(n+3)*(n+2)*(n+1)/120.

Original entry on oeis.org

1, 16, 81, 266, 686, 1512, 2982, 5412, 9207, 14872, 23023, 34398, 49868, 70448, 97308, 131784, 175389, 229824, 296989, 378994, 478170, 597080, 738530, 905580, 1101555, 1330056, 1594971, 1900486, 2251096, 2651616, 3107192, 3623312
Offset: 0

Author

Barry E. Williams, Jul 04 2000

Keywords

Crossrefs

Cf. A055268.

Programs

  • GAP
    List([0..40], n-> (11*n+5)*Binomial(n+4, 4)/5 ); # G. C. Greubel, Jan 17 2020
  • Magma
    [(11*n+5)*Binomial(n+4, 4)/5: n in [0..40]]; // G. C. Greubel, Jan 17 2020
    
  • Maple
    seq( (11*n+5)*binomial(n+4, 4)/5, n=0..40); # G. C. Greubel, Jan 17 2020
  • Mathematica
    Table[((11n+5)Times@@(n+Range[4]))/120,{n,0,40}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1}, {1,16,81,266,686,1512}, 40] (* Harvey P. Dale, Oct 18 2013 *)
    Table[11*Binomial[n+5,5] -8*Binomial[n+4,4], {n,0,40}] (* G. C. Greubel, Jan 17 2020 *)
  • PARI
    vector(41, n, (11*n-6)*binomial(n+3,4)/5 ) \\ G. C. Greubel, Jan 17 2020
    
  • Sage
    [(11*n+5)*binomial(n+4, 4)/5 for n in (0..40)] # G. C. Greubel, Jan 17 2020
    

Formula

a(n) = (11*n+5)*binomial(n+4,4)/5.
G.f.: (1+10*x)/(1-x)^6.
a(0)=1, a(1)=16, a(2)=81, a(3)=266, a(4)=686, a(5)=1512; for n>5, a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6). - Harvey P. Dale, Oct 18 2013
From G. C. Greubel, Jan 17 2020: (Start)
a(n) = 11*binomial(n+5,5) - 8*binomial(n+4,4).
E.g.f.: (360 +2760*x +3720*x^2 +1560*x^3 +235*x^4 +11*x^5)*exp(x)/120. (End)

A056120 a(n) = (3^3)*4^(n-3) with a(0)=1, a(1)=1 and a(2)=7.

Original entry on oeis.org

1, 1, 7, 27, 108, 432, 1728, 6912, 27648, 110592, 442368, 1769472, 7077888, 28311552, 113246208, 452984832, 1811939328, 7247757312, 28991029248, 115964116992, 463856467968, 1855425871872
Offset: 0

Author

Barry E. Williams, Jul 05 2000

Keywords

Comments

For n>=3, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4} such that for fixed, different x_1, x_2, x_3 in {1,2,...,n} and fixed y_1, y_2, y_3 in {1,2,3,4} we have f(x_i)<>y_i, (i=1,2,...,n). - Milan Janjic, May 13 2007

Crossrefs

Cf. A055841.
First differences of A002063.

Programs

  • GAP
    Concatenation([1,1,7], List([3..25], n-> 27*4^(n-3) )); # G. C. Greubel, Jan 18 2020
  • Magma
    [1,1,7] cat [27*4^(n-3): n in [3..25]]; // G. C. Greubel, Jan 18 2020
    
  • Maple
    1,1,7, seq( 27*4^(n-3), n=3..25); # G. C. Greubel, Jan 18 2020
  • Mathematica
    Table[If[n<2, 1, If[n==2, 7, 27*4^(n-3)]], {n,0,25}] (* G. C. Greubel, Jan 18 2020 *)
  • PARI
    vector(26, n, if(n<2, 1, if(n==2, 7, 27*4^(n-3))) ) \\ G. C. Greubel, Jan 18 2020
    
  • Sage
    [1,1,7]+[27*4^(n-3) for n in (3..25)] # G. C. Greubel, Jan 18 2020
    

Formula

a(n) = 4*a(n-1) + (-1)^n*binomial(3, 3-n).
G.f.: (1-x)^3/(1-4*x).
E.g.f.: (37 - 44*x + 8*x^2 + 27*exp(4*x))/64. - G. C. Greubel, Jan 18 2020

Extensions

a(21) corrected by R. J. Mathar, Dec 03 2014

A056122 a(n) = (8*n+9)*C(n+8,8)/9.

Original entry on oeis.org

1, 17, 125, 605, 2255, 7007, 19019, 46475, 104390, 218790, 432718, 814606, 1469650, 2554930, 4299130, 7027834, 11195503, 17425375, 26558675, 39714675, 58363305, 84412185, 120310125, 169169325, 234908700, 322420956, 437766252
Offset: 0

Author

Barry E. Williams, Jul 06 2000

Keywords

Crossrefs

Cf. A056001.
Cf. A093565 ((8, 1) Pascal, column m=9). Partial sums of A056001.
Cf. similar sequences listed in A254142.

Programs

  • GAP
    List([0..40], n-> (8*n+9)*Binomial(n+8,8)/9); # G. C. Greubel, Aug 29 2019
  • Magma
    [(8*n+9)*Binomial(n+8,8)/9: n in [0..40]]; // G. C. Greubel, Aug 29 2019
    
  • Maple
    seq((8*n+9)*binomial(n+8,8)/9, n=0..40); # G. C. Greubel, Aug 29 2019
  • Mathematica
    Table[(8n+9) Binomial[n+8,8]/9,{n,0,40}]  (* Harvey P. Dale, Mar 09 2011 *)
  • PARI
    vector(40, n, (8*n+1)*binomial(n+7,8)/9) \\ G. C. Greubel, Aug 29 2019
    
  • Sage
    [(8*n+9)*binomial(n+8,8)/9 for n in (0..40)] # G. C. Greubel, Aug 29 2019
    

Formula

G.f.: (1+7*x)/(1-x)^10.
a(n) = (362880 + 1308816*n + 1939788*n^2 + 1550548*n^3 + 740313*n^4 + 220416*n^5 + 41202*n^6 + 4692*n^7 + 297*n^8 + 8*n^9)/362880. - Harvey P. Dale, Mar 09 2011
E.g.f.: (362880 +5806080*x +16692480*x^2 +16934400*x^3 +7832160*x^4 + 1862784*x^5 +239904 x^6 +16704*x^7 +585*x^8 +8*x^9)*exp(x)/362880. - G. C. Greubel, Aug 29 2019

A056123 a(n) = 3*a(n-1) - a(n-2) with a(0)=1, a(1)=11.

Original entry on oeis.org

1, 11, 32, 85, 223, 584, 1529, 4003, 10480, 27437, 71831, 188056, 492337, 1288955, 3374528, 8834629, 23129359, 60553448, 158530985, 415039507, 1086587536, 2844723101, 7447581767, 19498022200, 51046484833, 133641432299
Offset: 0

Author

Barry E. Williams, Jul 06 2000

Keywords

Crossrefs

Programs

  • GAP
    List([0..30], n-> Fibonacci(2*n+2) +8*Fibonacci(2*n) ); # G. C. Greubel, Jan 17 2020
  • Magma
    [Fibonacci(2*n+2) +8*Fibonacci(2*n): n in [0..30]]; // G. C. Greubel, Jan 17 2020
    
  • Maple
    with(combinat); seq( fiboacci(2*n+2) +8*fibonacci(2*n), n=0..30); # G. C. Greubel, Jan 17 2020
  • Mathematica
    Table[Fibonacci[2*n+2] +8*Fibonacci[2*n], {n,0,30}] (* G. C. Greubel, Jan 17 2020 *)
  • PARI
    vector(31, n, fibonacci(2*n) +8*fibonacci(2*n-2) ) \\ G. C. Greubel, Jan 17 2020
    
  • Sage
    [fibonacci(2*n+2) +8*fibonacci(2*n) for n in (0..30)] # G. C. Greubel, Jan 17 2020
    

Formula

a(n) = {11*[((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n] - [((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)]}/sqrt(5).
G.f.: (1+8*x)/(1-3*x+x^2).
a(n) = 6*Lucas(2n+1) - Fibonacci(2n+5).
From G. C. Greubel, Jan 17 2020: (Start)
a(n) = Fibonacci(2*n+2) + 8*Fibonacci(2*n).
E.g.f.: exp(3*t/2)*( cosh(sqrt(5)*t/2) + (19/sqrt(5))*sinh(sqrt(5)*t/2) ). (End)

A056124 a(n) = 3*a(n-1) - a(n-2) + 8 with a(0)=1, a(1)=11.

Original entry on oeis.org

1, 11, 40, 117, 319, 848, 2233, 5859, 15352, 40205, 105271, 275616, 721585, 1889147, 4945864, 12948453, 33899503, 88750064, 232350697, 608302035, 1592555416, 4169364221, 10915537255, 28577247552, 74816205409
Offset: 0

Author

Barry E. Williams, Jul 07 2000

Keywords

Crossrefs

Cf. A000032, A000045, A055850 (first differences).

Programs

  • GAP
    List([0..30], n-> Fibonacci(2*n+2) + 8*Fibonacci(2*n+1) - 8 ); # G. C. Greubel, Jan 19 2020
  • Magma
    [Fibonacci(2*n+2) + 8*Fibonacci(2*n+1) - 8: n in [0..30]]; // G. C. Greubel, Jan 19 2020
    
  • Maple
    with(combinat); seq( fibonacci(2*n+2) + 8*fibonacci(2*n+1) - 8, n=0..30); # G. C. Greubel, Jan 19 2020
  • Mathematica
    LinearRecurrence[{4,-4,1},{1,11,40},30] (* Harvey P. Dale, Mar 25 2015 *)
  • PARI
    vector(31, n, fibonacci(2*n) +8*fibonacci(2*n-1) -8 ) \\ G. C. Greubel, Jan 19 2020
    
  • Sage
    [fibonacci(2*n+2) + 8*fibonacci(2*n+1) - 8 for n in (0..30)] # G. C. Greubel, Jan 19 2020
    

Formula

a(n) = ( 19*(((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n) - 9*(((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)) )/sqrt(5) - 8.
G.f.: (1+7*x)/((1-x)*(1-3*x+x^2)).
a(n) = Fibonacci(2*n+5) + 2*Lucas(2*n) - 8.
From G. C. Greubel, Jan 19 2020: (Start)
a(n) = Fibonacci(2*n+2) + 8*Fibonacci(2*n+1) - 8.
E.g.f.: exp(3*x/2)*( 9*cosh(sqrt(5)*x/2) - (11/sqrt(5))*sinh(sqrt(5)*x/2) ) - 8*exp(x). (End)

A056125 a(n) = (5*n + 4)*binomial(n+7,7)/4.

Original entry on oeis.org

1, 18, 126, 570, 1980, 5742, 14586, 33462, 70785, 140140, 262548, 469404, 806208, 1337220, 2151180, 3368244, 5148297, 7700814, 11296450, 16280550, 23088780, 32265090, 44482230, 60565050, 81516825, 108548856, 143113608, 186941656
Offset: 0

Author

Barry E. Williams, Jul 07 2000

Keywords

Crossrefs

Cf. A052254.
Cf. A093645 ((10, 1) Pascal, column m=8).
Partial sums of A052254.

Programs

  • GAP
    List([0..30], n-> (5*n+4)*Binomial(n+7,7)/4 ); # G. C. Greubel, Jan 19 2020
  • Magma
    [(5*n+4)*Binomial(n+7,7)/4: n in [0..30]]; // G. C. Greubel, Jan 19 2020
    
  • Maple
    seq( (5*n+4)*binomial(n+7,7)/4, n=0..30); # G. C. Greubel, Jan 19 2020
  • Mathematica
    Table[((5n+4)Binomial[n+7,7])/4,{n,0,30}] (* or *) LinearRecurrence[{9,-36,84, -126,126,-84,36,-9,1},{1,18,126,570,1980,5742,14586,33462,70785},30] (* Harvey P. Dale, Jan 18 2013 *)
  • PARI
    vector(31, n, (5*n-1)*binomial(n+6,7)/4 ) \\ G. C. Greubel, Jan 19 2020
    
  • Sage
    [(5*n+4)*binomial(n+7,7)/4 for n in (0..30)] # G. C. Greubel, Jan 19 2020
    

Formula

G.f.: (1+9*x)/(1-x)^9.
a(0)=1, a(1)=18, a(2)=126, a(3)=570, a(4)=1980, a(5)=5742, a(6)=14586, a(7)=33462, a(8)=70785, a(n) = 9*a(n-1) -36*a(n-2) +84*a(n-3) -126*a(n-4) + 126*a(n-5) -84*a(n-6) +36*a(n-7) -9*a(n-8) +a(n-9). - Harvey P. Dale, Jan 18 2013
From G. C. Greubel, Jan 19 2020: (Start)
a(n) = 10*binomial(n+8,8) - 9*binomial(n+7,7).
E.g.f.: (20160 + 342720*x + 917280*x^2 + 823200*x^3 + 323400*x^4 + 62328*x^5 + 6076*x^6 + 284*x^7 + 5*x^8)*exp(x)/20160. (End)

A056126 a(n) = n*(n + 17)/2.

Original entry on oeis.org

0, 9, 19, 30, 42, 55, 69, 84, 100, 117, 135, 154, 174, 195, 217, 240, 264, 289, 315, 342, 370, 399, 429, 460, 492, 525, 559, 594, 630, 667, 705, 744, 784, 825, 867, 910, 954, 999, 1045, 1092, 1140, 1189, 1239, 1290, 1342, 1395, 1449, 1504, 1560, 1617, 1675
Offset: 0

Author

Barry E. Williams, Jul 07 2000

Keywords

Programs

Formula

G.f.: x*(9-8*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A126890(n,8) for n>7. - Reinhard Zumkeller, Dec 30 2006
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*stirling1(n-k,i)* Product_{j=0..k-1} (-a-j), then a(n) = -f(n,n-1,9), for n>=1. - Milan Janjic, Dec 20 2008
a(n) = a(n-1) + n + 8 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
a(n) = 9*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
E.g.f.: x*(18 + x)*exp(x)/2. - G. C. Greubel, Jan 19 2020
From Amiram Eldar, Jan 10 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*A001008(17)/(17*A002805(17)) = 42142223/104144040.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/17 - 1768477/20828808. (End)