cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A018913 a(n) = 9*a(n - 1) - a(n - 2) for n>1, a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 9, 80, 711, 6319, 56160, 499121, 4435929, 39424240, 350382231, 3114015839, 27675760320, 245967827041, 2186034683049, 19428344320400, 172669064200551, 1534593233484559, 13638670037160480, 121213437100959761
Offset: 0

Views

Author

Keywords

Comments

Define the sequence L(a_0,a_1) by a_{n+2} is the greatest integer such that a_{n+2}/a_{n+1}= 0. This is L(1,9).
For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 9's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,8}. - Milan Janjic, Jan 25 2015
Not to be confused with the Pisot L(1,9) sequence, which is A001019. - R. J. Mathar, Feb 13 2016
Lim_{n->oo} a(n+1)/a(n) = (9 + sqrt(77))/2 = A092290 + 1 = 8.887482... - Wolfdieter Lang, Nov 16 2023

Examples

			G.f. = x + 9*x^2 + 80*x^3 + 711*x^4 + 6319*x^5 + 56160*x^6 + 499121*x^7 + ...
		

Crossrefs

Cf. A056918(n)=sqrt{77*(a(n))^2 +4}, that is, a(n)=sqrt((A056918(n)^2 - 4)/77).
Cf. A092290 + 1.

Programs

  • Magma
    I:=[0, 1]; [n le 2 select I[n] else 9*Self(n-1) - Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 23 2012
    
  • Mathematica
    CoefficientList[Series[x/(1 - 9*x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 23 2012 *)
  • PARI
    concat(0, Vec(x/(1-9*x+x^2) + O(x^30))) \\ Michel Marcus, Sep 06 2017
  • Sage
    [lucas_number1(n,9,1) for n in range(22)] # Zerinvary Lajos, Jun 25 2008
    

Formula

G.f.: x/(1-9*x+x^2).
a(n) = S(2*n-1, sqrt(11))/sqrt(11) = S(n-1, 9); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(-1, x) := 0.
a(n) = (((9+sqrt(77))/2)^n - ((9-sqrt(77))/2)^n)/sqrt(77). - Barry E. Williams, Aug 21 2000
a(n+1) = Sum_{k, 0<=k<=n} A101950(n,k)*8^k. - Philippe Deléham, Feb 10 2012
From Peter Bala, Dec 23 2012: (Start)
Product {n >= 1} (1 + 1/a(n)) = 1/7*(7 + sqrt(77)).
Product {n >= 2} (1 - 1/a(n)) = 1/18*(7 + sqrt(77)). (End)
a(n) = Sum_{k = 0..n-1} binomial(n+k, 2*k+1)*7^k = Sum_{k = 0..n-1} (-1)^(n+k+1)* binomial(n+k, 2*k+1)*11^k. - Peter Bala, Jul 17 2023
E.g.f.: 2*exp(9*x/2)*sinh(sqrt(77)*x/2)/sqrt(77). - Stefano Spezia, Feb 23 2025
Product_{n >= 1} (a(2*n) + 1)/(a(2*n) - 1) = sqrt(11/7) [telescoping product: ((a(2*n) + 1)/(a(2*n) - 1))^2 = (11 - 4/(a(n+1) - a(n))^2)/(11 - 4/(a(n) - a(n-1))^2), leading to 11 - 7*Product_{k = 1..n} ((a(2*k) + 1)/(a(2*k) - 1))^2 = 4/A070998(n)^2]. - Peter Bala, May 18 2025

Extensions

G.f. adapted to the offset by Vincenzo Librandi, Dec 23 2012

A057081 Even-indexed Chebyshev U-polynomials evaluated at sqrt(11)/2.

Original entry on oeis.org

1, 10, 89, 791, 7030, 62479, 555281, 4935050, 43860169, 389806471, 3464398070, 30789776159, 273643587361, 2432002510090, 21614379003449, 192097408520951, 1707262297685110, 15173263270645039, 134852107138120241, 1198495700972437130, 10651609201613813929
Offset: 0

Views

Author

Wolfdieter Lang, Aug 04 2000

Keywords

Comments

This is the m=11 member of the m-family of sequences S(n,m-2)+S(n-1,m-2) = S(2*n,sqrt(m)) (for S(n,x) see Formula). The m=4..10 instances are A005408, A002878, A001834, A030221, A002315, A033890 and A057080, resp. The m=1..3 (signed) sequences are: A057078, A057077 and A057079, resp.
General recurrence is a(n)=(a(1)-1)*a(n-1)-a(n-2), a(1)>=4, lim_{n->oo} a(n)= x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives A030221. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008
The primes in this sequence are 89, 389806471, 192097408520951, 7477414486269626733119, ... - Ctibor O. Zizka, Sep 02 2008
The aerated sequence (b(n))n>=1 = [1, 0, 10, 0, 89, 0, 791, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -7, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - Peter Bala, Mar 22 2015

Crossrefs

Programs

  • Maple
    A057081 := proc(n)
        option remember;
        if n <= 1 then
            op(n+1,[1,10]);
        else
            9*procname(n-1)-procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Apr 30 2017
  • Mathematica
    CoefficientList[Series[(1 + x)/(1 - 9*x + x^2), {x,0,50}], x] (* or *) LinearRecurrence[{9,-1}, {1,10}, 50] (* G. C. Greubel, Apr 12 2017 *)
  • PARI
    Vec((1+x)/(1-9*x+x^2) + O(x^30)) \\ Michel Marcus, Mar 22 2015
  • Sage
    [(lucas_number2(n,9,1)-lucas_number2(n-1,9,1))/7 for n in range(1, 20)] # Zerinvary Lajos, Nov 10 2009
    

Formula

a(n) = 9*a(n-1) - a(n-2), a(-1)=-1, a(0)=1.
a(n) = S(n, 9) + S(n-1, 9) = S(2*n, sqrt(11)) with S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 9) = A018913(n).
G.f.: (1+x)/(1-9*x+x^2).
Let q(n, x) = Sum{i=0..n} x^(n-i)*binomial(2*n-i, i), a(n) = (-1)^n*q(n, -11). - Benoit Cloitre, Nov 10 2002
a(n) = L(n,-9)*(-1)^n, where L is defined as in A108299; see also A070998 for L(n,+9). - Reinhard Zumkeller, Jun 01 2005
From Peter Bala, Jun 08 2025: (Start)
a(n) = (1/sqrt(7)) * ( ((sqrt(11) + sqrt(7))/2)^(2*n+1) - ((sqrt(11) - sqrt(7))/2)^(2*n+1) ).
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/11 (telescoping series: 11/(a(n) - 1/a(n)) = 1/A018913(n+1) + 1/A018913(n)).
Conjecture: for k >= 1, Sum_{n >= 1} (-1)^(n+1)/(a(k*n) - s(k)/a(k*n)) = 1/(1 + a(k)) where s(k) = a(0) + a(1) + ... + a(k-1).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(11/7) [telescoping product: ((a(n) + 1)/(a(n) - 1))^2 = (1 - 4/b(n+1))/(1 - 4/b(n)), where b(n) = 2 + A056918(n)]. (End)

A070998 a(n) = 9*a(n-1) - a(n-2) for n > 0, a(0)=1, a(-1)=1.

Original entry on oeis.org

1, 8, 71, 631, 5608, 49841, 442961, 3936808, 34988311, 310957991, 2763633608, 24561744481, 218292066721, 1940066856008, 17242309637351, 153240719880151, 1361924169284008, 12104076803675921, 107574767063799281, 956068826770517608
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org), May 18 2002

Keywords

Comments

A Pellian sequence.
In general, Sum_{k=0..n} binomial(2n-k,k)j^(n-k) = (-1)^n*U(2n, i*sqrt(j)/2), i=sqrt(-1). - Paul Barry, Mar 13 2005
a(n) = L(n,9), where L is defined as in A108299; see also A057081 for L(n,-9). - Reinhard Zumkeller, Jun 01 2005
Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5,6,7,8} which do not end in 0. - Tanya Khovanova, Jan 10 2007
For positive n, a(n) equals the permanent of the (2n) X (2n) tridiagonal matrix with sqrt(7)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Positive values of x (or y) satisfying x^2 - 9xy + y^2 + 7 = 0. - Colin Barker, Feb 09 2014

Crossrefs

Row 9 of array A094954.
Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,8]; [n le 2 select I[n] else 9*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 10 2014
  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 9 x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *)
    LinearRecurrence[{9,-1},{1,8},30] (* Harvey P. Dale, Sep 24 2015 *)
  • Sage
    [lucas_number1(n, 9, 1) - lucas_number1(n-1, 9, 1) for n in range(1, 19)]  # Zerinvary Lajos, Nov 10 2009
    

Formula

a(n) ~ (1/11)*sqrt(11)*((1/2)*(sqrt(11) + sqrt(7)))^(2*n+1).
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then q(n, 7) = a(n). - Benoit Cloitre, Nov 10 2002
a(n)*a(n+3) = 63 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
a(n) = (-1)^n*U(2n, i*sqrt(7)/2), U(n, x) Chebyshev polynomial of second kind, i=sqrt(-1). - Paul Barry, Mar 13 2005
G.f.: (1-x)/(1-9*x+x^2). - Philippe Deléham, Nov 03 2008
a(n) = A018913(n+1) - A018913(n). - R. J. Mathar, Jun 07 2013

Extensions

More terms from Vincenzo Librandi, Feb 10 2014

A098296 Member r=11 of the family of Chebyshev sequences S_r(n) defined in A092184.

Original entry on oeis.org

0, 1, 11, 100, 891, 7921, 70400, 625681, 5560731, 49420900, 439227371, 3903625441, 34693401600, 308336988961, 2740339499051, 24354718502500, 216452127023451, 1923714424708561, 17096977695353600, 151949084833473841
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Programs

  • GAP
    a:=[0,1,11];; for n in [4..30] do a[n]:=10*a[n-1]-10*a[n-2]+ a[n-3]; od; a; # G. C. Greubel, May 24 2019
  • Magma
    I:=[0,1,11]; [n le 3 select I[n] else 10*Self(n-1)-10*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, May 24 2019
    
  • Mathematica
    LinearRecurrence[{10,-10,1},{0,1,11},30] (* Harvey P. Dale, Jan 27 2012 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x*(1+x)/((1-x)*(1-9*x+x^2)))) \\ G. C. Greubel, May 24 2019
    
  • Sage
    (x*(1+x)/((1-x)*(1-9*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 24 2019
    

Formula

a(n) = 2*(T(n, 9/2)-1)/7 with twice Chebyshev's polynomials of the first kind evaluated at x=9/2: 2*T(n, 9/2) = A056918(n) = ((9 + sqrt(77))^n + (9 - sqrt(77))^n)/2^n.
a(n) = 9*a(n-1) - a(n-2) + 2, n >= 2, a(0)=0, a(1)=1.
a(n) = 10*a(n-1) - 10*a(n-2) + a(n-3), n >= 3, a(0)=0, a(1)=1, a(2)=11.
G.f.: x*(1+x)/((1-x)*(1-9*x+x^2)) = x*(1+x)/(1-10*x+10*x^2-x^3) (from the Stephan link, see A092184).

A299741 Array read by antidiagonals upwards: a(i,0) = 2, i >= 0; a(i,1) = i+2, i >= 0; a(i,j) = (i+2) * a(i,j-1) - a(i,j-2), for i >= 0, j > 1.

Original entry on oeis.org

2, 2, 2, 2, 3, 2, 2, 4, 7, 2, 2, 5, 14, 18, 2, 2, 6, 23, 52, 47, 2, 2, 7, 34, 110, 194, 123, 2, 2, 8, 47, 198, 527, 724, 322, 2, 2, 9, 62, 322, 1154, 2525, 2702, 843, 2, 2, 10, 79, 488, 2207, 6726, 12098, 10084, 2207, 2, 2, 11, 98, 702, 3842, 15127, 39202, 57965, 37634, 5778, 2
Offset: 0

Views

Author

William W. Collier, Feb 18 2018

Keywords

Comments

Note the similarity in form of the recursive steps in the array definition above and the polynomial definition under FORMULA.

Examples

			i\j |0  1   2    3      4       5        6          7           8            9
----+-------------------------------------------------------------------------
   0|2  2   2    2      2       2        2          2           2            2
   1|2  3   7   18     47     123      322        843        2207         5778
   2|2  4  14   52    194     724     2702      10084       37634       140452
   3|2  5  23  110    527    2525    12098      57965      277727      1330670
   4|2  6  34  198   1154    6726    39202     228486     1331714      7761798
   5|2  7  47  322   2207   15127   103682     710647     4870847     33385282
   6|2  8  62  488   3842   30248   238142    1874888    14760962    116212808
   7|2  9  79  702   6239   55449   492802    4379769    38925119    345946302
   8|2 10  98  970   9602   95050   940898    9313930    92198402    912670090
   9|2 11 119 1298  14159  154451  1684802   18378371   200477279   2186871698
  10|2 12 142 1692  20162  240252  2862862   34114092   406506242   4843960812
  11|2 13 167 2158  27887  360373  4656962   60180133   777684767  10049721838
  12|2 14 194 2702  37634  524174  7300802  101687054  1416317954  19726764302
  13|2 15 223 3330  49727  742575 11088898  165590895  2472774527  36926027010
  14|2 16 254 4048  64514 1028176 16386302  261152656  4162056194  66331746448
  15|2 17 287 4862  82367 1395377 23639042  400468337  6784322687 114933017342
  16|2 18 322 5778 103682 1860498 33385282  599074578 10749957122 192900153618
  17|2 19 359 6802 128879 2441899 46267202  876634939 16609796639 314709501202
  18|2 20 398 7940 158402 3160100 63043598 1257711860 25091193602 500566160180
  19|2 21 439 9198 192719 4037901 84603202 1772629341 37140612959 778180242798
		

Crossrefs

The array first appeared in A298675.
Rows 1 through 29 of the array appear in these OEIS entries: A005248, A003500, A003501, A003499, A056854, A086903, A056918, A087799, A057076, A087800, A078363, A067902, A078365, A090727, A078367, A087215, A078369, A090728, A090729, A090730, A090731, A090732, A090733, A090247, A090248, A090249, A090251. Also entries occur for rows 45, 121, and 320: A087265, A065705, A089775. Each of these entries asserts that a(i,j)=f(i+2,j) is true for that row.
A few of the columns appear in the OEIS: A008865 (for column 2), A058794 and A007754 (for column 3), and A230586 (for column 5).
Main diagonal gives A343261.

Programs

  • Maple
    A:= proc(i, j) option remember; `if`(min(i, j)=0, 2,
          `if`(j=1, i+2, (i+2)*A(i, j-1)-A(i, j-2)))
        end:
    seq(seq(A(d-k, k), k=0..d), d=0..12);  # Alois P. Heinz, Mar 05 2019
  • Mathematica
    a[, 0] = a[0, ] = 2; a[i_, 1] := i + 2;
    a[i_, j_] := a[i, j] =(i + 2) a[i, j - 1] - a[i, j - 2];
    Table[a[i - j, j], {i, 0, 10}, {j, 0, i}] // Flatten (* Jean-François Alcover, Dec 07 2019 *)

Formula

Let k be an integer, and let r1 and r2 be the roots of x + 1/x = k. Then f(k,n) = r1^n + r2^n is an integer, for integer n >= 0. Theorem: a(i,j) = f(i+2,j), for i,j >= 0. Proof: See the Collier link.
Define polynomials recursively by:
p[0](n) = 2, for n >= 0 ( [ and ] demark subscripts).
p[1](n) = n + 2, for n >= 0.
p[j](n) = p[j-1](n) * p[1](n) - p[j-2](n), for j > 1, n >= 0. The coefficients of these polynomials occur as the even numbered, upward diagonals in the OEIS Wiki link. Conjecture: a(i,j) = p[j](i), i,j >= 0.

Extensions

Edited by N. J. A. Sloane, Apr 04 2018

A060964 Table by antidiagonals where T(n,k) = n*T(n,k-1) - T(n,k-2) with T(n,0) = 2 and T(n,1) = n.

Original entry on oeis.org

2, 0, 2, -2, 1, 2, 0, -1, 2, 2, 2, -2, 2, 3, 2, 0, -1, 2, 7, 4, 2, -2, 1, 2, 18, 14, 5, 2, 0, 2, 2, 47, 52, 23, 6, 2, 2, 1, 2, 123, 194, 110, 34, 7, 2, 0, -1, 2, 322, 724, 527, 198, 47, 8, 2, -2, -2, 2, 843, 2702, 2525, 1154, 322, 62, 9, 2, 0, -1, 2, 2207, 10084, 12098, 6726, 2207, 488, 79, 10, 2
Offset: 0

Views

Author

Henry Bottomley, May 09 2001

Keywords

Examples

			Square array begins as:
  2, 0, -2,   0,   2,    0,    -2, ...
  2, 1, -1,  -2,  -1,    1,     2, ...
  2, 2,  2,   2,   2,    2,     2, ...
  2, 3,  7,  18,  47,  123,   322, ...
  2, 4, 14,  52, 194,  724,  2702, ...
  2, 5, 23, 110, 527, 2525, 12098, ...
		

Crossrefs

Programs

  • GAP
    T:= function(n,k)
        if k=0 then return 2;
        elif k=1 then return n;
        else return n*T(n,k-1) - T(n,k-2);
        fi; end;
    Flat(List([0..12], n-> List([0..n], k-> T(k,n-k) ))); # G. C. Greubel, Jan 15 2020
  • Magma
    function T(n,k)
      if k eq 0 then return 2;
      elif k eq 1 then return n;
      else return n*T(n, k-1) - T(n, k-2);
      end if; return T; end function;
    [T(k,n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 15 2020
    
  • Maple
    seq(seq( simplify(k*ChebyshevU(n-k-1, k/2) -2*ChebyshevU(n-k-2, k/2)), k=0..n), n=0..12); # G. C. Greubel, Jan 15 2020
  • Mathematica
    Table[k*ChebyshevU[n-k-1, k/2] -2*ChebyshevU[n-k-2, k/2], {n,0,12}, {k,0,n} ]//Flatten
  • PARI
    T(n,k) = n*polchebyshev(k-1,2,n/2) -2*polchebyshev(k-2,2,n/2);
    for(n=0,12, for(k=0,n, print1(T(k,n-k), ", "))) \\ G. C. Greubel, Jan 15 2020
    
  • Sage
    [[k*chebyshev_U(n-k-1, k/2) -2*chebyshev_U(n-k-2, k/2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 15 2020
    

Formula

For all m, T(n, k) = T(n, |m|)*T(n, |k - m|) - T(n, |k - 2m|).
T(n, 2k) = T(n, k)^2 - 2.
T(n, 2k + 1) = T(n, k)*T(n, k + 1) - n.
T(n, 3k) = T(n, k)^3 - 3*T(n, k).
T(n, 4k) = T(n, k)^4 - 4*T(n, k)^2 + 2.
T(n, 5k) = T(n, k)^5 - 5*T(n, k)^3 + 5*T(n, k) etc.
T(n, -k) = T(n, k).
T(-n, k) = T(-n, -k) = (-1)^k * T(n, k).
T(n, k) = ( n*( ((n + sqrt(n^2 -4))/2)^k - ((n - sqrt(n^2 -4))/2)^k ) - 2*( ((n + sqrt(n^2 -4))/2)^(k-1) - ((n - sqrt(n^2 -4))/2)^(k-1) ) )/sqrt(n^2 -4).
T(n, k) = n*ChebyshevU(k-1, n/2) - 2*ChebyshevU(k-2, n/2). - G. C. Greubel, Jan 15 2020

A098307 Unsigned member r=-7 of the family of Chebyshev sequences S_r(n) defined in A092184.

Original entry on oeis.org

0, 1, 7, 64, 567, 5041, 44800, 398161, 3538647, 31449664, 279508327, 2484125281, 22077619200, 196214447521, 1743852408487, 15498457228864, 137742262651287, 1224181906632721, 10879894897043200, 96694872166756081
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Comments

((-1)^(n+1))*a(n) = S_{-7}(n), n>=0, defined in A092184.

Programs

  • Mathematica
    LinearRecurrence[{8,8,-1},{0,1,7},20] (* Harvey P. Dale, Jan 01 2017 *)

Formula

a(n)= 2*(T(n, 9/2)-(-1)^n)/11, with twice Chebyshev's polynomials of the first kind evaluated at x=9/2: 2*T(n, 9/2)=A056918(n)=((9+sqrt(77))^n + (9-sqrt(77))^n)/2^n.
a(n)= 9*a(n-1)-a(n-2)+2*(-1)^(n+1), n>=2, a(0)=0, a(1)=1.
a(n)= 8*a(n-1) + 8*a(n-2) - a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=7.
G.f.: x*(1-x)/((1+x)*(1-9*x+x^2)) = x*(1-x)/(1-8*x-8*x^2+x^3) (from the Stephan link, see A092184).
Showing 1-7 of 7 results.