cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A343261 a(n) = 2 * T(n,(n+2)/2) where T(n,x) is a Chebyshev polynomial of the first kind.

Original entry on oeis.org

2, 3, 14, 110, 1154, 15127, 238142, 4379769, 92198402, 2186871698, 57721023502, 1678243366813, 53301709843202, 1836220544383695, 68200709735854334, 2716906424134261502, 115561578124838522882, 5227260815326346060059, 250566480717349417632398
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2021

Keywords

Crossrefs

Main diagonal of A299741.

Programs

  • Mathematica
    Table[2*ChebyshevT[n, (n+2)/2], {n, 0, 18}] (* Amiram Eldar, Apr 09 2021 *)
  • PARI
    a(n) = 2*polchebyshev(n, 1, (n+2)/2);
    
  • PARI
    a(n) = round(2*cos(n*acos((n+2)/2)));
    
  • PARI
    a(n) = if(n==0, 2, 2*n*sum(k=0, n, n^k*binomial(n+k, 2*k)/(n+k)));

Formula

a(n) = 2 * cos(n*arccos((n+2)/2)).
a(n) = 2 * n * Sum_{k=0..n} n^k * binomial(n+k,2*k)/(n+k) for n > 0.
a(n) ~ exp(2) * n^n. - Vaclav Kotesovec, Apr 09 2021

A304725 a(n) = n^4 + 8*n^3 + 20*n^2 + 16*n + 2.

Original entry on oeis.org

2, 47, 194, 527, 1154, 2207, 3842, 6239, 9602, 14159, 20162, 27887, 37634, 49727, 64514, 82367, 103682, 128879, 158402, 192719, 232322, 277727, 329474, 388127, 454274, 528527, 611522, 703919, 806402, 919679, 1044482, 1181567, 1331714, 1495727, 1674434, 1868687
Offset: 0

Views

Author

Vincenzo Librandi, May 30 2018

Keywords

Crossrefs

Cf. A008865.
Fourth column of the array in A298675 (without -1).
Fifth column of the array in A299741.

Programs

  • Magma
    [n^4+8*n^3+20*n^2+16*n+2: n in [0..40]];
  • Mathematica
    Table[n^4 + 8 n^3 + 20 n^2 + 16 n + 2, {n, 0, 40}]
    LinearRecurrence[{5,-10,10,-5,1},{2,47,194,527,1154},50] (* Harvey P. Dale, Jan 23 2025 *)

Formula

G.f.: (2 + 37*x - 21*x^2 + 7*x^3 - x^4)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A008865(n+2)^2 - 2. Therefore, a(n) is a member of A008865.
Showing 1-2 of 2 results.