cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Arie Bos

Arie Bos's wiki page.

Arie Bos has authored 49 sequences. Here are the ten most recent ones:

A356426 Even bisection of A003278.

Original entry on oeis.org

2, 5, 11, 14, 29, 32, 38, 41, 83, 86, 92, 95, 110, 113, 119, 122, 245, 248, 254, 257, 272, 275, 281, 284, 326, 329, 335, 338, 353, 356, 362, 365, 731, 734, 740, 743, 758, 761, 767, 770, 812, 815, 821, 824, 839, 842, 848, 851, 974, 977, 983, 986, 1001, 1004, 1010, 1013, 1055, 1058
Offset: 1

Author

Arie Bos, Aug 07 2022

Keywords

Comments

Complement sequence of A191107 in A003278.

Crossrefs

Programs

Formula

a(n) = A003278(2n).

A356248 Image of 1 under repeated application of the map k -> (2k-1,2k,2k-1).

Original entry on oeis.org

1, 2, 1, 3, 4, 3, 1, 2, 1, 5, 6, 5, 7, 8, 7, 5, 6, 5, 1, 2, 1, 3, 4, 3, 1, 2, 1, 9, 10, 9, 11, 12, 11, 9, 10, 9, 13, 14, 13, 15, 16, 15, 13, 14, 13, 9, 10, 9, 11, 12, 11, 9, 10, 9, 1, 2, 1, 3, 4, 3, 1, 2, 1, 5, 6, 5, 7, 8, 7, 5, 6, 5, 1, 2, 1, 3, 4, 3, 1, 2, 1
Offset: 0

Author

Arie Bos, Jul 31 2022

Keywords

Examples

			1 --> 1 2 1 --> 1 2 1 3 4 3 1 2 1 --> 1 2 1 3 4 3 1 2 1 5 6 5 7 8 7 5 6 5 1 2 1 3 4 3 1 2 1 -->...
		

Crossrefs

Cf. A289813.

Programs

  • PARI
    a(n) = fromdigits(digits(n,3)%2,2) + 1; \\ Kevin Ryde, Jul 31 2022
  • Python
    def aupton(terms):
        a, n = [1], 0
        while len(a) < 3*terms: a, n = a + [(1<Michael S. Branicky, Jul 31 2022
    

Formula

If A(n) = (a(0),a(1),...,a(3^n-1)), then A(n+1) = (A(n),2^n+A(n),A(n)).
a(n) = A289813(n) + 1. - Rémy Sigrist, Jul 31 2022

A356112 Direction of segment n in the E curve of Dekking and McKenna.

Original entry on oeis.org

1, 1, 2, -1, 2, 1, 2, -1, -1, 2, 1, 1, 1, 2, 1, -2, -2, -1, -2, -2, 1, 2, 1, -2, -2, 1, 1, 2, -1, 2, 1, 2, -1, -1, 2, 1, 1, 1, 2, 1, -2, -2, -1, -2, -2, 1, 2, 1, -2, -2, 1, 1, 2, -1, 2, 1, 1, -2, 1, 1, 2, -1, 2, 2, 2, -1, -2, -2, -1, 2, -1, -2, -1, 2, 2, 2, 2, -1, -2, -1, 2, 2, 1, 2, 2, -1, -2, -1, -1, -1, -2, 1, 1, -2, -1, -2, 1, -2, -1, -1, 2, 2, -1, -2
Offset: 0

Author

Arie Bos, Jul 27 2022

Keywords

Comments

On the square grid go one step to the left for a -1, one to the right for a +1, one down for a -2, and one up for a +2. Otherwise stated, replace +-1 with the vector +-(1,0) and +-2 with the vector +-(0,1), then take the running sum to obtain all the vertices of the fractal.
Dekking's "Recurrent sets" published this first, but this "E-curve" was discovered in 1978 by Douglas McKenna.

References

  • Douglas M. McKenna, "SquaRecurves, E-Tours, Eddies, and Frenzies: Basic Families of Peano Curves on the Square Grid", in "The Lighter Side of Mathematics: Proceedings of the Eugene Strens Memorial Conference on Recreational Mathematics and its History", Mathematical Association of America, 1994, pages 49-73, ISBN 0-88385-516-X.

Crossrefs

Other curves: A229214, A261180.

Formula

If s=[a,b] is a signed permutation, then s(1)=a, s(2)=b, s(-x)=-s(x), a,b,x in {1,2,-1,-2}. Substitution T is defined by T(i) = (i, i, ut, -t, u, i, ut, -t, -i, ut, i, i, t, u, t, -u, -u, -t, -u, -ut, t, u, i, -ut, -ut), where the signed permutations are defined by i=[1,2], t=[1, -2], u=[2, -1]. The start of the substitution is 1. This means that
T([1,2]x)=([1,2](x), [1,2](x), [2,-1][1,-2](x), -[1,-2](x), [2,-1](x), [1,2](x), [2,-1][1,-2](x), -[1,-2](x), -[1,2](x), [2,-1][1,-2](x), [1,2](x), [1,2](x), [1,-2](x), [2,-1](x), [1,-2](x), -[2,-1](x), -[2,-1](x), -[1,-2](x), -[2,-1](x), -[2,-1][1,-2](x), [1,-2](x), [2,-1](x), [1,2](x), -[2,-1][1,-2](x), -[2,-1][1,-2])(x)),
So T(1)=(1,1,2,-1,2, 1,2,-1,-1,2, 1,1,1,2,1, -2,-2,-1,-2,-2, 1,2,1,-2,-2) etc.
(See Bos arXiv link, appendix B3.)

A278588 Triangle read by rows: T(p_1,p_2) = maximal period of a decimal fraction (r/s)*(t/u) given that r/s has period p_1 and t/u has period p_2 (1 <= p_1 <= p_2).

Original entry on oeis.org

9, 18, 198, 27, 54, 2997, 36, 396, 108, 39996, 45, 90, 135, 180, 499995, 54, 594, 5994, 3564, 270, 5999994, 63, 126, 189, 252, 315
Offset: 1

Author

N. J. A. Sloane, Dec 03 2016, based on English translations provided by Arie Bos and R. J. Mathar

Keywords

Examples

			Triangle begins (read down columns):
...1.....2....3....4....5.....6......7....(p_2)
1..9....18...27...36...45....54.....63
2......198...54..396...90...594....126
3..........2997..108..135..5994....189
4..............39996..180..3564....252
5..................499995...270....315
...
(p_1)
		

Crossrefs

Cf. A110807 (diagonal?)

A251714 7-step Fibonacci sequence starting with (0,1,0,0,0,0,0).

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 1, 2, 3, 6, 12, 24, 48, 96, 191, 380, 757, 1508, 3004, 5984, 11920, 23744, 47297, 94214, 187671, 373834, 744664, 1483344, 2954768, 5885792, 11724287, 23354360, 46521049, 92668264, 184591864, 367700384, 732446000, 1459006208, 2906288129
Offset: 0

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 7-step Fibonacci sequences are A066178, A104621, A122189, A251710, A251711, A251712, A251713.

Programs

  • J
    NB. see A251713 for the program and apply it to 0 1 0 0 0 0 0.
  • Mathematica
    LinearRecurrence[Table[1, {7}], {0, 1, 0, 0, 0, 0, 0}, 40] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+7) = a(n) + a(n+1) + a(n+2) + a(n+3) + a(n+4) + a(n+5) + a(n+6).
G.f.: x*(-1+x+x^2+x^3+x^4+x^5)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7) . - R. J. Mathar, Mar 28 2025

A251713 7-step Fibonacci sequence starting with (0,0,1,0,0,0,0).

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 1, 2, 4, 7, 14, 28, 56, 112, 223, 444, 884, 1761, 3508, 6988, 13920, 27728, 55233, 110022, 219160, 436559, 869610, 1732232, 3450544, 6873360, 13691487, 27272952, 54326744, 108216929, 215564248, 429396264, 855341984, 1703810608, 3393929729
Offset: 0

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 7-step Fibonacci sequences are A066178, A104621, A122189, A251710, A251711, A251712, A251714.

Programs

  • J
    (see www.jsoftware.com) First construct the generating matrix
       [M=: (#.@}: + {:)\"1&.|: <:/~i.7
     1  1  1  1  1  1  1
     1  2  2  2  2  2  2
     2  3  4  4  4  4  4
     4  6  7  8  8  8  8
     8 12 14 15 16 16 16
    16 24 28 30 31 32 32
    32 48 56 60 62 63 64
    Given that matrix, one can produce the first 7*150 numbers by
    , M(+/ . *)^:(i.150) 0 0 1 0 0 0 0x
  • Mathematica
    LinearRecurrence[Table[1, {7}], {0, 0, 1, 0, 0, 0, 0}, 40] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+7) = a(n) + a(n+1) + a(n+2) + a(n+3) + a(n+4) + a(n+5) + a(n+6).
G.f.: x^2*(-1+x+x^2+x^3+x^4)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7) . - R. J. Mathar, Mar 28 2025

A251712 7-step Fibonacci sequence starting with (0,0,0,1,0,0,0).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 2, 4, 8, 15, 30, 60, 120, 239, 476, 948, 1888, 3761, 7492, 14924, 29728, 59217, 117958, 234968, 468048, 932335, 1857178, 3699432, 7369136, 14679055, 29240152, 58245336, 116022624, 231112913, 460368648, 917037864, 1826706592, 3638734129
Offset: 0

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 7-step Fibonacci sequences are A066178, A104621, A122189, A251710, A251711, A251713, A251714.

Programs

  • J
    NB. see A251713 for the program and apply it to 0 0 0 1 0 0 0.
  • Mathematica
    LinearRecurrence[Table[1, {7}], {0, 0, 0, 1, 0, 0, 0}, 40] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+7) = a(n) + a(n+1) + a(n+2) + a(n+3) + a(n+4) + a(n+5) + a(n+6).
G.f.: x^3*(-1+x+x^2+x^3)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7) . - R. J. Mathar, Mar 28 2025

A251711 7-step Fibonacci sequence starting with (0,0,0,0,1,0,0).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 2, 4, 8, 16, 31, 62, 124, 247, 492, 980, 1952, 3888, 7745, 15428, 30732, 61217, 121942, 242904, 483856, 963824, 1919903, 3824378, 7618024, 15174831, 30227720, 60212536, 119941216, 238918608, 475917313, 948010248, 1888402472, 3761630113
Offset: 0

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 7-step Fibonacci sequences are A066178, A104621, A122189, A251710, A251712, A251713, A251714.

Programs

  • J
    NB. see A251713 for the program and apply it to 0 0 0 0 1 0 0.
  • Mathematica
    LinearRecurrence[Table[1, {7}], {0, 0, 0, 0, 1, 0, 0}, 40] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+7) = a(n) + a(n+1) + a(n+2) + a(n+3) + a(n+4) + a(n+5) + a(n+6).
G.f.: x^4*(-1+x+x^2)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7) . - R. J. Mathar, Mar 28 2025
a(n) = A066178(n-4)-A066178(n-5)-A066178(n-6). - R. J. Mathar, Mar 28 2025

A251710 7-step Fibonacci sequence starting with (0,0,0,0,0,1,0).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 2, 4, 8, 16, 32, 63, 126, 251, 500, 996, 1984, 3952, 7872, 15681, 31236, 62221, 123942, 246888, 491792, 979632, 1951392, 3887103, 7742970, 15423719, 30723496, 61200104, 121908416, 242837200, 483723008, 963558913, 1919374856, 3823325993
Offset: 0

Author

Arie Bos, Dec 07 2014

Keywords

Comments

a(n+7) equals the number of n-length binary words avoiding runs of zeros of lengths 7i+6, (i=0,1,2,...). - Milan Janjic, Feb 26 2015

Crossrefs

Other 7-step Fibonacci sequences are A066178, A104621, A122189, A251711, A251712, A251713, A251714.

Programs

  • J
    NB. see A251713 for the program and apply it to 0 0 0 0 0 1 0.
  • Mathematica
    LinearRecurrence[Table[1, {7}], {0, 0, 0, 0, 0, 1, 0}, 40] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+7) = a(n) + a(n+1) + a(n+2) + a(n+3) + a(n+4) + a(n+5) + a(n+6).
G.f.: x^5*(x-1)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7) . - R. J. Mathar, Mar 28 2025
a(n) = A066178(n-5)-A066178(n-6). - R. J. Mathar, Mar 28 2025

A251654 4-step Fibonacci sequence starting with 0, 1, 1, 0.

Original entry on oeis.org

0, 1, 1, 0, 2, 4, 7, 13, 26, 50, 96, 185, 357, 688, 1326, 2556, 4927, 9497, 18306, 35286, 68016, 131105, 252713, 487120, 938954, 1809892, 3488679, 6724645, 12962170, 24985386, 48160880, 92833081, 178941517, 344920864, 664856342, 1281551804
Offset: 0

Author

Arie Bos, Dec 06 2014

Keywords

Crossrefs

Other 4-step Fibonacci sequences are A000078, A000288, A001630, A001631, A001648, A073817, A100532, A251655, A251656, A251672, A251703, A251704, A251705.

Programs

  • J
    NB. see A251655 for the program and apply it to 0,1,1,0.
  • Mathematica
    LinearRecurrence[Table[1, {4}], {0, 1, 1, 0}, 36] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+4) = a(n) + a(n+1) + a(n+2) + a(n+3).
G.f.: x*(-1+2*x^2)/(-1+x+x^2+x^3+x^4). - R. J. Mathar, Mar 28 2025
a(n) = A000078(n+2)-2*A000078(n). - R. J. Mathar, Mar 28 2025