cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A251711 7-step Fibonacci sequence starting with (0,0,0,0,1,0,0).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 2, 4, 8, 16, 31, 62, 124, 247, 492, 980, 1952, 3888, 7745, 15428, 30732, 61217, 121942, 242904, 483856, 963824, 1919903, 3824378, 7618024, 15174831, 30227720, 60212536, 119941216, 238918608, 475917313, 948010248, 1888402472, 3761630113
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 7-step Fibonacci sequences are A066178, A104621, A122189, A251710, A251712, A251713, A251714.

Programs

  • J
    NB. see A251713 for the program and apply it to 0 0 0 0 1 0 0.
  • Mathematica
    LinearRecurrence[Table[1, {7}], {0, 0, 0, 0, 1, 0, 0}, 40] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+7) = a(n) + a(n+1) + a(n+2) + a(n+3) + a(n+4) + a(n+5) + a(n+6).
G.f.: x^4*(-1+x+x^2)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7) . - R. J. Mathar, Mar 28 2025
a(n) = A066178(n-4)-A066178(n-5)-A066178(n-6). - R. J. Mathar, Mar 28 2025

A251712 7-step Fibonacci sequence starting with (0,0,0,1,0,0,0).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 2, 4, 8, 15, 30, 60, 120, 239, 476, 948, 1888, 3761, 7492, 14924, 29728, 59217, 117958, 234968, 468048, 932335, 1857178, 3699432, 7369136, 14679055, 29240152, 58245336, 116022624, 231112913, 460368648, 917037864, 1826706592, 3638734129
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 7-step Fibonacci sequences are A066178, A104621, A122189, A251710, A251711, A251713, A251714.

Programs

  • J
    NB. see A251713 for the program and apply it to 0 0 0 1 0 0 0.
  • Mathematica
    LinearRecurrence[Table[1, {7}], {0, 0, 0, 1, 0, 0, 0}, 40] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+7) = a(n) + a(n+1) + a(n+2) + a(n+3) + a(n+4) + a(n+5) + a(n+6).
G.f.: x^3*(-1+x+x^2+x^3)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7) . - R. J. Mathar, Mar 28 2025

A251713 7-step Fibonacci sequence starting with (0,0,1,0,0,0,0).

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 1, 2, 4, 7, 14, 28, 56, 112, 223, 444, 884, 1761, 3508, 6988, 13920, 27728, 55233, 110022, 219160, 436559, 869610, 1732232, 3450544, 6873360, 13691487, 27272952, 54326744, 108216929, 215564248, 429396264, 855341984, 1703810608, 3393929729
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 7-step Fibonacci sequences are A066178, A104621, A122189, A251710, A251711, A251712, A251714.

Programs

  • J
    (see www.jsoftware.com) First construct the generating matrix
       [M=: (#.@}: + {:)\"1&.|: <:/~i.7
     1  1  1  1  1  1  1
     1  2  2  2  2  2  2
     2  3  4  4  4  4  4
     4  6  7  8  8  8  8
     8 12 14 15 16 16 16
    16 24 28 30 31 32 32
    32 48 56 60 62 63 64
    Given that matrix, one can produce the first 7*150 numbers by
    , M(+/ . *)^:(i.150) 0 0 1 0 0 0 0x
  • Mathematica
    LinearRecurrence[Table[1, {7}], {0, 0, 1, 0, 0, 0, 0}, 40] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+7) = a(n) + a(n+1) + a(n+2) + a(n+3) + a(n+4) + a(n+5) + a(n+6).
G.f.: x^2*(-1+x+x^2+x^3+x^4)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7) . - R. J. Mathar, Mar 28 2025

A251714 7-step Fibonacci sequence starting with (0,1,0,0,0,0,0).

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 1, 2, 3, 6, 12, 24, 48, 96, 191, 380, 757, 1508, 3004, 5984, 11920, 23744, 47297, 94214, 187671, 373834, 744664, 1483344, 2954768, 5885792, 11724287, 23354360, 46521049, 92668264, 184591864, 367700384, 732446000, 1459006208, 2906288129
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 7-step Fibonacci sequences are A066178, A104621, A122189, A251710, A251711, A251712, A251713.

Programs

  • J
    NB. see A251713 for the program and apply it to 0 1 0 0 0 0 0.
  • Mathematica
    LinearRecurrence[Table[1, {7}], {0, 1, 0, 0, 0, 0, 0}, 40] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+7) = a(n) + a(n+1) + a(n+2) + a(n+3) + a(n+4) + a(n+5) + a(n+6).
G.f.: x*(-1+x+x^2+x^3+x^4+x^5)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7) . - R. J. Mathar, Mar 28 2025
Showing 1-4 of 4 results.