Danny Rorabaugh has authored 28 sequences. Here are the ten most recent ones:
A322100
Number of minimal transitive permutation groups of degree n.
Original entry on oeis.org
1, 1, 1, 2, 1, 4, 1, 5, 2, 6, 1, 17, 1, 6, 4, 75, 1, 23, 1, 47, 5, 6, 1, 213, 2, 7, 20, 30, 1, 79, 1, 12033, 3, 7, 4, 436, 1, 5, 4, 1963, 1, 84, 1, 148, 41, 4, 1
Offset: 1
There are two transitive groups of degree 3, A_3 and S_3, so A002106(3)=2. However, a(3)=1, because A_3 is minimal, but S_3 has proper transitive subgroups A_3 and S_2.
A294207
Triangle read by rows: T(n,k) is the number of lattice paths from (0,0) to (n,k), 0 <= 3k <= 2n, that are below the line 3y=2x, only touching at the end points.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 1, 3, 3, 1, 4, 7, 7, 1, 5, 12, 19, 19, 1, 6, 18, 37, 37, 1, 7, 25, 62, 99, 99, 1, 8, 33, 95, 194, 293, 293, 1, 9, 42, 137, 331, 624, 624, 1, 10, 52, 189, 520, 1144, 1768, 1768, 1, 11, 63, 252, 772, 1916, 3684, 5452, 5452
Offset: 0
The table begins:
n=0: 1;
n=1: 1;
n=2: 1, 1;
n=3: 1, 2, 2;
n=4: 1, 3, 3;
n=5: 1, 4, 7, 7;
n=6: 1, 5, 12, 19, 19;
n=7: 1, 6, 18, 37, 37;
n=8: 1, 7, 25, 62, 99, 99;
n=9: 1, 8, 33, 95, 194, 293, 293.
-
T[, 0] = 1; T[n, k_] := T[n, k] = Which[0 < k < 2(n-1)/3, T[n-1, k] + T[n, k-1], 2(n-1) <= 3k <= 2n, T[n, k-1]];
Table[T[n, k], {n, 0, 15}, {k, 0, Floor[2n/3]}] // Flatten (* Jean-François Alcover, Jul 10 2018 *)
-
T = [[1]]
for n in range(1,15):
T.append([T[-1][0]])
for k in range(1,floor(2*n/3) + 1):
T[-1].append(T[-1][k-1])
if 2*(n-1)>3*k:
T[-1][-1] += T[-2][k]
A270952
T(n, k) is the number of k-element connected subposets of the n-th Boolean lattice, 0 <= k <= 2^n.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 4, 5, 4, 1, 1, 8, 19, 42, 61, 56, 28, 8, 1, 1, 16, 65, 304, 1129, 3200, 6775, 10680, 12600, 11386, 8002, 4368, 1820, 560, 120, 16, 1, 1, 32, 211, 1890, 14935, 97470
Offset: 0
The triangle begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 1 1
1 1 2 1
2 1 4 5 4 1
3 1 8 19 42 61 56 28 8 1
4 1 16 65 304 1129 3200 6775 10680 12600 11386 8002 4368 1820 560 120
5 1 32 211 1890 14935 97470 ...
For T(2, 2) = 5: [{},{1}], [{},{2}], [{},{1,2}], [{1},{1,2}], [{2},{1,2}].
A270440
Least k such that binomial(k, 2) >= binomial(2*n, n).
Original entry on oeis.org
2, 3, 4, 7, 13, 23, 44, 84, 161, 313, 609, 1189, 2327, 4562, 8958, 17614, 34673, 68318, 134724, 265878, 525066, 1037554, 2051390, 4057939, 8030892, 15900354, 31493446, 62400953, 123682583, 245223436, 486342641, 964809156, 1914483817, 3799849586, 7543612064, 14979070587, 29749371096, 59095356237, 117410567231
Offset: 0
-
Table[SelectFirst[Range[10^7], Binomial[#, 2] >= Binomial[2 n, n] &], {n, 0, 22}] (* Michael De Vlieger, Mar 17 2016, Version 10 *)
-
a(n) = {my(c = binomial(2*n, n)); my(k = 0); while (binomial(k,2) < c, k++); k;} \\ Michel Marcus, Mar 17 2016
-
from _future_ import division
from gmpy2 import iroot
A270440_list, b = [], 8
for n in range(1001):
q, r = iroot(b+1,2)
A270440_list.append(int((q+1)//2 + (0 if r else 1)))
b = b*2*(2*n+1)//(n+1) # Chai Wah Wu, Mar 22 2016
-
def k2_2nn(M): # Produces the first M terms.
K, n, center, k, triangle = [], 0, 1, 1, 0
while len(K)
A269832
Greatest term of height n in Recamán's sequence A005132.
Original entry on oeis.org
1, 3, 7, 13, 25, 46, 91, 164, 286, 515, 962, 1744, 3137, 5810, 10319, 18953, 35079, 63237
Offset: 1
A269831
Least term of height n in Recamán's sequence A005132.
Original entry on oeis.org
1, 2, 6, 8, 14, 26, 4, 47, 92, 111, 181, 150, 371, 361, 781, 828, 366, 19
Offset: 1
A269830
Number of terms of height n in Recamán's sequence A005132.
Original entry on oeis.org
1, 2, 2, 6, 11, 22, 34, 61, 115, 220, 397, 681, 1329, 2430, 4561, 8116, 14848, 24878
Offset: 1
A269699
Irregular triangle read by rows: T(n, k) is the number of k-element proper ideals of the n-dimensional Boolean lattice, with 0 < k < 2^n.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 3, 4, 3, 3, 1, 1, 4, 6, 10, 13, 18, 19, 24, 19, 18, 13, 10, 6, 4, 1, 1, 5, 10, 20, 35, 61, 95, 155, 215, 310, 387, 470, 530, 580, 605, 621, 605, 580, 530, 470, 387, 310, 215, 155, 95, 61, 35, 20, 10, 5, 1, 1, 6, 15, 35, 75, 156, 306, 605, 1110, 2045, 3512, 5913, 9415
Offset: 1
For row n = 3, the k-element proper ideals are the down-sets of the following antichains:
T(3, 1) = 1: [{}];
T(3, 2) = 3: [{0}], [{1}], [{2}];
T(3, 3) = 3: [{0},{1}], [{0},{2}], [{1},{2}];
T(3, 4) = 4: [{0,1}], [{0,2}], [{1,2}], [{0},{1},{2}];
T(3, 5) = 3: [{0,1},{2}], [{0,2},{1}], [{1,2},{0}];
T(3, 6) = 3: [{0,1},{0,2}], [{0,1},{1,2}], [{0,2},{1,2}];
T(3, 7) = 1: [{0,1},{0,2},{1,2}].
E.g., the 5-element down-set of [{0,1},{2}] is [{},{0},{1},{2},{0,1}].
The table begins:
n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 1
2 1 2 1
3 1 3 3 4 3 3 1
4 1 4 6 10 13 18 19 24 19 18 13 10 6 4 1
5 1 5 10 20 35 61 95 155 215 310 387 470 530 580 605 621 605 ...
A261147
English flagpole sequence of nonnegative integers (like A215693, but with a(1)=0).
Original entry on oeis.org
0, 1, 3, 2, 4, 7, 5, 8, 13, 14, 9, 10, 12, 20, 21, 15, 22, 24, 23, 6, 11, 17, 16, 18, 25, 19, 27, 26, 28, 29, 38, 30, 31, 32, 33, 34, 35, 36, 37, 39, 41, 40, 42, 44, 43, 45, 47, 48, 49, 51, 46, 57, 53, 50, 55, 59, 52, 62, 58, 111, 65, 61, 54, 72, 63, 67, 56
Offset: 1
The sequence begins: 0,1,3,2,4,7,5,8,13....
The initial terms are spelled: ZERO;ONE;THREE;TWO;....
These letters are found in the spelling of the initial terms: Zero, onE, thRee, twO; fOur, seveN, fivE; eighT, tHirteen, ....
-
little = {0:"", 1:"one", 2:"two", 3:"three", 4:"four", 5:"five", 6:"six", 7:"seven", 8:"eight", 9:"nine", 10:"ten", 11:"eleven", 12:"twelve", 13:"thirteen", 14:"fourteen", 15:"fifteen", 16:"sixteen", 17:"seventeen", 18:"eighteen", 19:"nineteen"}
decade = {2:"twenty", 3:"thirty", 4:"forty", 5:"fifty", 6:"sixty", 7:"seventy", 8:"eighty", 9:"ninety"}
illion = {1:"thousand", 2:"million", 3:"billion", 4:"trillion"}
def nmb_wrd(n): # For positive integers n<10^15
if n<20: return little[n]
if n<100: return decade[floor(n/10)] + little[n%10]
if n<1000: return little[floor(n/100)] + "hundred" + nmb_wrd(n%100)
k = floor((len(str(n))-1)/3)
return nmb_wrd(floor(n/10^(3*k))) + illion[k] + nmb_wrd(n%(10^(3*k)))
def English_fp(n, A = [0,1,3,2], i = 1):
while len(A)A215693 is English_fp(113, [1,7,3])
A264815
Semirps: a semirp (or semi-r-p) is a semiprime r*p with r and p both reversed primes.
Original entry on oeis.org
4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 39, 49, 51, 55, 62, 65, 74, 77, 85, 91, 93, 111, 119, 121, 142, 143, 146, 155, 158, 169, 185, 187, 194, 202, 213, 214, 217, 219, 221, 226, 237, 259, 262, 289, 291, 298, 302, 303, 314, 321, 334, 339, 341, 355
Offset: 1
9 is in the list because 9 = 3*3 is a semiprime and reverse(3) = 3 is prime.
143 is in the list because 143 = 11*13 is a semiprime and both reverse(11) = 11 and reverse(13) = 31 are prime.
-
With[{nn=250},Take[Union[Times@@@Select[Tuples[IntegerReverse/@Prime[Range[nn]],2],AllTrue[#,PrimeQ]&]],60]] (* Harvey P. Dale, Apr 27 2025 *)
-
reverse = lambda n: sum([10^i*int(str(n)[i]) for i in range(len(str(n)))])
def is_semirp(n):
F = factor(n)
if sum([f[1] for f in F])==2:
r, p = F[0][0], F[-1][0]
if is_prime(reverse(r)) and is_prime(reverse(p)): return True
[a for a in range(1,356) if is_semirp(a)] # Danny Rorabaugh, Nov 25 2015
Comments