cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Hans Isdahl

Hans Isdahl's wiki page.

Hans Isdahl has authored 7 sequences.

A214329 Complement of A214328.

Original entry on oeis.org

2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109
Offset: 1

Author

N. J. A. Sloane, Jul 26 2012, following a suggestion from Hans Isdahl, Apr 19 2012

Keywords

Comments

Numbers that are the sum of 2 or 3 nonzero squares. - Altug Alkan, Jan 13 2016

Crossrefs

Programs

  • PARI
    is2(n) = {for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2))}
    is3(n) = {my(a, b) ; a=1; while(a^2+1Altug Alkan, Jan 13 2016

A214328 Intersection of A004214 and A018825.

Original entry on oeis.org

1, 4, 7, 15, 16, 23, 28, 31, 39, 47, 55, 60, 63, 64, 71, 79, 87, 92, 95, 103, 111, 112, 119, 124, 127, 135, 143, 151, 156, 159, 167, 175, 183, 188, 191, 199, 207, 215, 220, 223, 231, 239, 240, 247, 252, 255, 256, 263, 271, 279, 284, 287, 295, 303, 311, 316, 319, 327, 335, 343, 348, 351, 359, 367, 368, 375, 380, 383, 391, 399, 407, 412, 415, 423, 431, 439
Offset: 1

Author

N. J. A. Sloane, Jul 26 2012, following a suggestion from Hans Isdahl, Apr 19 2012

Keywords

Crossrefs

Formula

a(n) ~ 6 * n. - Bill McEachen, Mar 24 2024

A134934 a(n) = (14*n+1)^2.

Original entry on oeis.org

1, 225, 841, 1849, 3249, 5041, 7225, 9801, 12769, 16129, 19881, 24025, 28561, 33489, 38809, 44521, 50625, 57121, 64009, 71289, 78961, 87025, 95481, 104329, 113569, 123201, 133225, 143641, 154449, 165649, 177241, 189225, 201601, 214369, 227529, 241081
Offset: 0

Author

Hans Isdahl, Jan 26 2008

Keywords

Comments

Number of rats in population after n years, starting with one rat at year 0 (see A016754 for more details).

Crossrefs

Sequences of the form (m*n+1)^2: A000012 (m=0), A000290 (m=1), A016754 (m=2), A016778 (m=3), A016814 (m=4), A016862 (m=5), A016922 (m=6), A016994 (m=7), A017078 (m=8), A017174 (m=9), A017282 (m=10), A017402 (m=11), A017534 (m=12), this sequence (m=14).
Cf. A016754.

Programs

Formula

O.g.f.: (1+222*x+169*x^2)/(1-x)^3 = 169/(1-x) - 560/(1-x)^2 + 392/(1-x)^3. - R. J. Mathar, Jan 31 2008
a(n) = A016754(7*n).
E.g.f.: (1 + 224*x + 196*x^2)*exp(x). - G. C. Greubel, Dec 24 2022

A131062 Rounded frequencies of notes in a Pythagorean scale, starting with 260.7 Hertz for a C.

Original entry on oeis.org

261, 293, 330, 348, 391, 440, 495, 521, 587, 660, 695, 782, 880, 990, 1043, 1173, 1320, 1391, 1564, 1760, 1980, 2086
Offset: 1

Author

Hans Isdahl, Sep 24 2007

Keywords

Comments

The approximate value of 260.7 Hz for the C corresponds to 16/27 * 440 Hz. The frequencies correspond to the ratios [1/1, 9/8, 81/64, 4/3, 3/2, 27/16, 243/128, 2/1].

Crossrefs

Cf. A131071 for the same scale including half-tones.
Cf. A071831/A071832 = A071833/24. - M. F. Hasler, Jun 14 2012
Cf. A101285.

Extensions

Value of a(8) corrected, sequence extended to 3 octaves and comments added by M. F. Hasler (following suggestions by Franklin T. Adams-Watters and Charles R Greathouse IV), Oct 05 2011

A131071 12-note scale in Hertz (rounded to integers).

Original entry on oeis.org

261, 275, 293, 309, 330, 348, 366, 391, 412, 440, 464, 495, 521
Offset: 1

Author

Hans Isdahl, Sep 24 2007

Keywords

Crossrefs

Cf. A131062 for the corresponding C major scale. [M. F. Hasler, Oct 07 2011]
Cf. A214832.

Formula

The scale involves 9/8 and 256/243 as fractions and the start is A = 440 Hz.
The initial term (rounded frequency of the C) is calculated as 16/27 * 440 Hz = 260.74 Hz, cf. the Wikipedia page on Pythagorean tuning for the ratios of the frequencies. - M. F. Hasler, Oct 07 2011

A131098 Partial sums of A151798.

Original entry on oeis.org

1, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 119, 123, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239
Offset: 1

Author

Hans Isdahl, Sep 24 2007

Keywords

Comments

1 together with A004767. - Omar E. Pol, Feb 23 2014

Examples

			g.f. = x + 3*x^2 + 7*x^3 + 11*x^4 + 15*x^5 + 19*x^6 + 23*x^7 + 27*x^8 + ...
		

Crossrefs

Programs

  • Magma
    I:=[1,3,7]; [n le 3 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..70]]; // Vincenzo Librandi, Feb 25 2014
    
  • Mathematica
    CoefficientList[Series[(x + 2 x^2 + 1)/(x - 1)^2, {x, 0, 80}], x] (* Vincenzo Librandi, Feb 25 2014 *)
    LinearRecurrence[{2,-1},{1,3,7},70] (* Harvey P. Dale, Jan 03 2023 *)
  • PARI
    A131098(n)=abs(4*n-5) \\ M. F. Hasler, Apr 27 2018

Formula

a(1) = 1, a(n) = 4*n - 5 for n >= 2. - Jaroslav Krizek, Aug 15 2009
G.f.: x*(x+2*x^2+1)/(x-1)^2. - R. J. Mathar, Dec 08 2010
E.g.f.: exp(x)*(4*x - 5) + 5 + 2*x. - Stefano Spezia, Mar 21 2025

Extensions

Edited by N. J. A. Sloane, Jun 29 2009

A118263 a(3n) = 2^n, a(3n+1) = 3^n, a(3n+2) = 4^n.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 4, 9, 16, 8, 27, 64, 16, 81, 256, 32, 243, 1024, 64, 729, 4096, 128, 2187, 16384, 256, 6561, 65536, 512, 19683, 262144, 1024, 59049, 1048576, 2048, 177147, 4194304, 4096, 531441, 16777216, 8192, 1594323, 67108864, 16384, 4782969
Offset: 0

Author

Hans Isdahl, Sep 20 2007

Keywords

Programs

  • Mathematica
    Table[{2^Floor[n/3], 3^Floor[n/3], 4^Floor[n/3]}[[Mod[n, 3] + 1]], {n, 0, 100}] (* Olivier Gérard, Sep 20 2007 *)
    LinearRecurrence[{0,0,9,0,0,-26,0,0,24},{1,1,1,2,3,4,4,9,16},60] (* Harvey P. Dale, Jan 30 2021 *)

Formula

From R. J. Mathar, Mar 01 2010: (Start)
a(n) = 9*a(n-3) - 26*a(n-6) + 24*a(n-9).
G.f.: -(1+x+x^2-7*x^3-6*x^4-5*x^5+12*x^6+8*x^7+6*x^8) / ((3*x^3-1) * (2*x^3-1) * (4*x^3-1)). (End)

Extensions

More terms from Olivier Gérard, Sep 20 2007