A016814
a(n) = (4*n + 1)^2.
Original entry on oeis.org
1, 25, 81, 169, 289, 441, 625, 841, 1089, 1369, 1681, 2025, 2401, 2809, 3249, 3721, 4225, 4761, 5329, 5929, 6561, 7225, 7921, 8649, 9409, 10201, 11025, 11881, 12769, 13689, 14641, 15625, 16641, 17689, 18769, 19881, 21025, 22201, 23409, 24649, 25921, 27225, 28561, 29929
Offset: 0
Sequences of the form (m*n+1)^2:
A000012 (m=0),
A000290 (m=1),
A016754 (m=2),
A016778 (m-3), this sequence (m=4),
A016862 (m=5),
A016922 (m=6),
A016994 (m=7),
A017078 (m=8),
A017174 (m=9),
A017282 (m=10),
A017402 (m=11),
A017534 (m=12),
A134934 (m=14).
-
[(4*n+1)^2: n in [0..40]]; // G. C. Greubel, Dec 28 2022
-
A016814:=n->(4*n+1)^2; seq(A016814(k), k=0..100); # Wesley Ivan Hurt, Nov 02 2013
-
(4*Range[0,40] +1)^2 (* or *) LinearRecurrence[{3,-3,1}, {1,25,81}, 40] (* Harvey P. Dale, Nov 20 2012 *)
Accumulate[32Range[0, 47] - 8] + 9 (* Alonso del Arte, Aug 19 2017 *)
-
a(n)=(4*n+1)^2 \\ Charles R Greathouse IV, Oct 07 2015
-
[(4*n+1)^2 for n in range(41)] # G. C. Greubel, Dec 28 2022
A016862
a(n) = (5*n + 1)^2.
Original entry on oeis.org
1, 36, 121, 256, 441, 676, 961, 1296, 1681, 2116, 2601, 3136, 3721, 4356, 5041, 5776, 6561, 7396, 8281, 9216, 10201, 11236, 12321, 13456, 14641, 15876, 17161, 18496, 19881, 21316, 22801, 24336, 25921
Offset: 0
Sequences of the form (m*n+1)^2:
A000012 (m=0),
A000290 (m=1),
A016754 (m=2),
A016778 (m-3),
A016814 (m=4), this sequence (m=5),
A016922 (m=6),
A016994 (m=7),
A017078 (m=8),
A017174 (m=9),
A017282 (m=10),
A017402 (m=11),
A017534 (m=12),
A134934 (m=14).
-
[(5*n+1)^2: n in [0..40]]; // G. C. Greubel, Dec 28 2022
-
(5*Range[0,40]+1)^2 (* or *) LinearRecurrence[{3,-3,1},{1,36,121},40] (* Harvey P. Dale, Jul 11 2012 *)
-
a(n)=(5*n+1)^2 \\ Charles R Greathouse IV, Jun 17 2017
-
[(5*n+1)^2 for n in range(41)] # G. C. Greubel, Dec 28 2022
A017282
a(n) = (10*n + 1)^2.
Original entry on oeis.org
1, 121, 441, 961, 1681, 2601, 3721, 5041, 6561, 8281, 10201, 12321, 14641, 17161, 19881, 22801, 25921, 29241, 32761, 36481, 40401, 44521, 48841, 53361, 58081, 63001, 68121, 73441, 78961, 84681, 90601, 96721, 103041, 109561, 116281, 123201
Offset: 0
Sequences of the form (m*n+1)^2:
A000012 (m=0),
A000290 (m=1),
A016754 (m=2),
A016778 (m=3),
A016814 (m=4),
A016862 (m=5),
A016922 (m=6),
A016994 (m=7),
A017078 (m=8),
A017174 (m=9), this sequence (m=10),
A017402 (m=11),
A017534 (m=12),
A134934 (m=14).
-
[(10*n+1)^2: n in [0..35]]; // Vincenzo Librandi, Jul 30 2011
-
(* Programs from Michael De Vlieger, Mar 30 2017 *)
Table[(10 n+1)^2, {n, 0, 35}]
FoldList[#1 + 200 #2 - 80 &, 1, Range@ 35]
CoefficientList[Series[(1+118x+81x^2)/(1-x)^3, {x,0,35}], x] (* End *)
LinearRecurrence[{3,-3,1},{1,121,441},40] (* Harvey P. Dale, Sep 21 2017 *)
-
for(n=0, 35, print1((10*n+1)^2", ")); \\ Bruno Berselli, Jul 30 2011
-
[(10*n+1)^2 for n in range(51)] # G. C. Greubel, Dec 24 2022
A016994
a(n) = (7*n + 1)^2.
Original entry on oeis.org
1, 64, 225, 484, 841, 1296, 1849, 2500, 3249, 4096, 5041, 6084, 7225, 8464, 9801, 11236, 12769, 14400, 16129, 17956, 19881, 21904, 24025, 26244, 28561, 30976, 33489, 36100, 38809, 41616, 44521, 47524
Offset: 0
Sequences of the form (m*n+1)^2:
A000012 (m=0),
A000290 (m=1),
A016754 (m=2),
A016778 (m-3),
A016814 (m=4),
A016862 (m=5),
A016922 (m=6), this sequence (m=7),
A017078 (m=8),
A017174 (m=9),
A017282 (m=10),
A017402 (m=11),
A017534 (m=12),
A134934 (m=14).
-
[(7*n+1)^2: n in [0..40]]; // Vincenzo Librandi, Jul 13 2011
-
(7Range[0,50]+1)^2 (* Harvey P. Dale, Mar 05 2011 *)
CoefficientList[Series[(1+61*x+36*x^2)/(1-x)^3, {x,0,40}], x] (* Vincenzo Librandi, Jan 27 2013 *)
-
a(n)=(7*n+1)^2 \\ Charles R Greathouse IV, Jun 17 2017
-
[(7*n+1)^2 for n in range(41)] # G. C. Greubel, Dec 28 2022
A017078
a(n) = (8*n + 1)^2.
Original entry on oeis.org
1, 81, 289, 625, 1089, 1681, 2401, 3249, 4225, 5329, 6561, 7921, 9409, 11025, 12769, 14641, 16641, 18769, 21025, 23409, 25921, 28561, 31329, 34225, 37249, 40401, 43681, 47089, 50625, 54289, 58081
Offset: 0
Sequences of the form (m*n+1)^2:
A000012 (m=0),
A000290 (m=1),
A016754 (m=2),
A016778 (m-3),
A016814 (m=4),
A016862 (m=5),
A016922 (m=6),
A016994 (m=7), this sequence (m=8),
A017174 (m=9),
A017282 (m=10),
A017402 (m=11),
A017534 (m=12),
A134934 (m=14).
A017174
a(n) = (9*n + 1)^2.
Original entry on oeis.org
1, 100, 361, 784, 1369, 2116, 3025, 4096, 5329, 6724, 8281, 10000, 11881, 13924, 16129, 18496, 21025, 23716, 26569, 29584, 32761, 36100, 39601, 43264, 47089, 51076, 55225, 59536, 64009, 68644
Offset: 0
Sequences of the form (m*n+1)^2:
A000012 (m=0),
A000290 (m=1),
A016754 (m=2),
A016778 (m-3),
A016814 (m=4),
A016862 (m=5),
A016922 (m=6),
A016994 (m=7),
A017078 (m=8), this sequence (m=9),
A017282 (m=10),
A017402 (m=11),
A017534 (m=12),
A134934 (m=14).
-
[(9*n+1)^2: n in [0..40]]; // Vincenzo Librandi, Aug 25 2011
-
(9*Range[0,40] +1)^2 (* G. C. Greubel, Dec 28 2022 *)
LinearRecurrence[{3,-3,1},{1,100,361},50] (* Harvey P. Dale, Feb 25 2024 *)
-
a(n)=(9*n+1)^2 \\ Charles R Greathouse IV, Jun 17 2017
-
[(9*n+1)^2 for n in range(41)] # G. C. Greubel, Dec 28 2022
A017402
a(n) = (11*n+1)^2.
Original entry on oeis.org
1, 144, 529, 1156, 2025, 3136, 4489, 6084, 7921, 10000, 12321, 14884, 17689, 20736, 24025, 27556, 31329, 35344, 39601, 44100, 48841, 53824, 59049, 64516, 70225, 76176, 82369, 88804, 95481, 102400
Offset: 0
Sequences of the form (m*n+1)^2:
A000012 (m=0),
A000290 (m=1),
A016754 (m=2),
A016778 (m=3),
A016814 (m=4),
A016862 (m=5),
A016922 (m=6),
A016994 (m=7),
A017078 (m=8),
A017174 (m=9),
A017282 (m=10), this sequence (m=11),
A017534 (m=12),
A134934 (m=14).
-
[(11*n+1)^2: n in [0..50]]; // G. C. Greubel, Dec 24 2022
-
(11*Range[0,30]+1)^2 (* or *) LinearRecurrence[{3,-3,1},{1,144,529},30] (* Harvey P. Dale, May 05 2014 *)
-
a(n)=(11*n+1)^2 \\ Charles R Greathouse IV, Jun 17 2017
-
[(11*n+1)^2 for n in range(51)] # G. C. Greubel, Dec 24 2022
A017534
a(n) = (12*n + 1)^2.
Original entry on oeis.org
1, 169, 625, 1369, 2401, 3721, 5329, 7225, 9409, 11881, 14641, 17689, 21025, 24649, 28561, 32761, 37249, 42025, 47089, 52441, 58081, 64009, 70225, 76729, 83521, 90601, 97969, 105625, 113569, 121801
Offset: 0
Sequences of the form (m*n+1)^2:
A000012 (m=0),
A000290 (m=1),
A016754 (m=2),
A016778 (m=3),
A016814 (m=4),
A016862 (m=5),
A016922 (m=6),
A016994 (m=7),
A017078 (m=8),
A017174 (m=9),
A017282 (m=10),
A017402 (m=11), this sequence (m=12),
A134934 (m=14).
-
I:=[1, 169, 625]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jul 07 2012
-
CoefficientList[Series[(1+166*x+121*x^2)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 07 2012 *)
LinearRecurrence[{3,-3,1},{1,169,625},30] (* Harvey P. Dale, Feb 27 2023 *)
-
a(n)=(12*n+1)^2 \\ Charles R Greathouse IV, Jun 17 2017
-
[(12*n+1)^2 for n in range(51)] # G. C. Greubel, Dec 24 2022
A347533
Array A(n,k) where A(n,0) = n and A(n,k) = (k*n + 1)^2 - A(n,k-1), n > 0, read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 3, 3, 7, 6, 4, 13, 18, 10, 5, 21, 36, 31, 15, 6, 31, 60, 64, 50, 21, 7, 43, 90, 109, 105, 71, 28, 8, 57, 126, 166, 180, 151, 98, 36, 9, 73, 168, 235, 275, 261, 210, 127, 45, 10, 91, 216, 316, 390, 401, 364, 274, 162, 55, 11, 111, 270, 409, 525, 571, 560, 477, 351, 199, 66
Offset: 1
Array, A(n, k), begins:
1 3 6 10 15 21 28 36 45 ... A000217;
2 7 18 31 50 71 98 127 162 ... A195605;
3 13 36 64 105 151 210 274 351 ...
4 21 60 109 180 261 364 477 612 ...
5 31 90 166 275 401 560 736 945 ...
6 43 126 235 390 571 798 1051 1350 ...
7 57 168 316 525 771 1078 1422 1827 ...
8 73 216 409 680 1001 1400 1849 2376 ...
9 91 270 514 855 1261 1764 2332 2997 ...
Antidiagonals, T(n, k), begin as:
1;
2, 3;
3, 7, 6;
4, 13, 18, 10;
5, 21, 36, 31, 15;
6, 31, 60, 64, 50, 21;
7, 43, 90, 109, 105, 71, 28;
8, 57, 126, 166, 180, 151, 98, 36;
9, 73, 168, 235, 275, 261, 210, 127, 45;
10, 91, 216, 316, 390, 401, 364, 274, 162, 55;
Family of sequences (k*n + 1)^2:
A016754 (k=2),
A016778 (k=3),
A016814 (k=4),
A016862 (k=5),
A016922 (k=6),
A016994 (k=7),
A017078 (k=8),
A017174 (k=9),
A017282 (k=10),
A017402 (k=11),
A017534 (k=12),
A134934 (k=14).
-
A347533:= func< n,k | (1/2)*((k*(n-k)+1)*((k+1)*(n-k)+1) +(-1)^k*(n-k- 1)) >;
[A347533(n,k): k in [0..n-1], n in [1..13]]; // G. C. Greubel, Dec 25 2022
-
A[n_, 0]:= n; A[n_, k_]:= (k*n+1)^2 -A[n,k-1]; Table[Function[n, A[n, k]][m-k+1], {m,0,10}, {k,0,m}]//Flatten (* Michael De Vlieger, Oct 27 2021 *)
-
def A347533(n,k): return (1/2)*((k*(n-k)+1)*((k+1)*(n-k)+1) +(-1)^k*(n-k- 1))
flatten([[A347533(n,k) for k in range(n)] for n in range(1,14)]) # G. C. Greubel, Dec 25 2022
Showing 1-9 of 9 results.
Comments