cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A131061 Triangle read by rows: T(n,k) = 4*binomial(n,k) - 3 for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 9, 9, 1, 1, 13, 21, 13, 1, 1, 17, 37, 37, 17, 1, 1, 21, 57, 77, 57, 21, 1, 1, 25, 81, 137, 137, 81, 25, 1, 1, 29, 109, 221, 277, 221, 109, 29, 1, 1, 33, 141, 333, 501, 501, 333, 141, 33, 1, 1, 37, 177, 477, 837, 1005, 837, 477, 177, 37, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums = A131062: (1, 2, 7, 20, 49, 110, 235, ...); the binomial transform of (1, 1, 4, 4, 4, ...).
Triangle equals 4*A007318 - 3*A000012 as infinite lower triangular matrices. - Emeric Deutsch, Jun 21 2007

Examples

			First few rows of the triangle are
  1;
  1,  1;
  1,  5,  1;
  1,  9,  9,  1;
  1, 13, 21, 13,  1;
  1, 17, 37, 37, 17,  1;
  1, 21, 57, 77, 57, 21, 1;
  ...
		

Crossrefs

Programs

  • Magma
    [4*Binomial(n, k) -3: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    T := proc (n, k) if k <= n then 4*binomial(n, k)-3 else 0 end if end proc; for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jun 21 2007
  • Mathematica
    Table[4*Binomial[n, k] -3, {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    [[4*binomial(n, k) -3 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020

Formula

G.f.:(1 - z - t*z + 4*t*z^2)/((1-z)*(1-t*z)*(1-z-t*z)). - Emeric Deutsch, Jun 21 2007

Extensions

More terms from Emeric Deutsch, Jun 21 2007

A123203 a(n) = 2^(n+1) - 3*n.

Original entry on oeis.org

1, 2, 7, 20, 49, 110, 235, 488, 997, 2018, 4063, 8156, 16345, 32726, 65491, 131024, 262093, 524234, 1048519, 2097092, 4194241, 8388542, 16777147, 33554360, 67108789, 134217650, 268435375, 536870828, 1073741737, 2147483558
Offset: 1

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

An elephant sequence, see A175654. For the corner squares just one A[5] vector, with decimal value 186, leads to this sequence. For the central square this vector leads to the companion sequence A036563. - Johannes W. Meijer, Aug 15 2010

Examples

			a(4) = 20, row sums of 4th row of triangle A131062: (1, 9, 9, 1).
a(4) = 20 = (1, 3, 3, 1) dot (1, 1, 4, 4) = (1 + 3 + 12 + 4).
		

Crossrefs

Programs

Formula

Binomial transform of [1, 1, 4, 4, 4, ...].
Equals row sums of triangle A131061.
From Johannes W. Meijer, Aug 15 2010; corrected by Colin Barker, Jul 28 2012: (Start)
a(n) = 2^(1+n) - 3*n.
a(n) = 3*A000295(n-1) + A000079(n-1).
(End)
G.f.: x*(1 - 2*x + 4*x^2)/((1-x)^2*(1-2*x)). - Colin Barker, Jul 28 2012
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). - Colin Barker, Jul 29 2012
E.g.f.: 2*exp(2*x) - 3*x*exp(x) - 2. - G. C. Greubel, Sep 14 2024

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Nov 15 2008
Title changed by G. C. Greubel, Sep 14 2024

A214832 Integer part of A440 piano key frequencies, start with A0 = the 1st key.

Original entry on oeis.org

27, 29, 30, 32, 34, 36, 38, 41, 43, 46, 48, 51, 55, 58, 61, 65, 69, 73, 77, 82, 87, 92, 97, 103, 110, 116, 123, 130, 138, 146, 155, 164, 174, 184, 195, 207, 220, 233, 246, 261, 277, 293, 311, 329, 349, 369, 391, 415, 440, 466, 493, 523, 554, 587, 622, 659, 698, 739, 783, 830, 880, 932, 987, 1046, 1108, 1174, 1244, 1318, 1396, 1479, 1567, 1661, 1760, 1864, 1975, 2093, 2217, 2349, 2489, 2637, 2793, 2959, 3135, 3322, 3520, 3729, 3951, 4186
Offset: 1

Views

Author

Jon Perry, Mar 07 2013

Keywords

Comments

A254531(a(k)) = k, k = 1..88. - Reinhard Zumkeller, Feb 04 2015

Examples

			Middle C is 261.626 Hz so a(40) = 261.
		

Crossrefs

Programs

  • Haskell
    a214832 = floor . (* 440) . (2 **) . (/ 12) . fromIntegral . subtract 49
    -- Reinhard Zumkeller, Nov 23 2014
  • JavaScript
    for (i=1;i<=88;i++) document.write(Math.floor(Math.pow(2,(i-49)/12)*440)+", ");
    
  • PARI
    a(n)=floor(440*2^((n-49)/12));
    

Formula

a(n) = floor[2^((n-49)/12)*440] (Hz) for 1 <= n <= 88.

A131071 12-note scale in Hertz (rounded to integers).

Original entry on oeis.org

261, 275, 293, 309, 330, 348, 366, 391, 412, 440, 464, 495, 521
Offset: 1

Views

Author

Hans Isdahl, Sep 24 2007

Keywords

Crossrefs

Cf. A131062 for the corresponding C major scale. [M. F. Hasler, Oct 07 2011]
Cf. A214832.

Formula

The scale involves 9/8 and 256/243 as fractions and the start is A = 440 Hz.
The initial term (rounded frequency of the C) is calculated as 16/27 * 440 Hz = 260.74 Hz, cf. the Wikipedia page on Pythagorean tuning for the ratios of the frequencies. - M. F. Hasler, Oct 07 2011

A319727 Rounded frequencies of notes in the shruti scale of Indian classical music, starting with 260.7 Hertz for C-equivalent note.

Original entry on oeis.org

261, 275, 278, 290, 293, 309, 313, 326, 330, 348, 352, 367, 371, 391, 412, 417, 435, 440, 464, 469, 489, 495, 521, 549, 556, 579, 587, 618, 626, 652, 660, 695, 704, 733, 743, 782, 824, 834, 869, 880, 927, 939, 978, 990
Offset: 1

Views

Author

Jim Singh, Sep 26 2018

Keywords

Comments

A shruti can be interpreted as the smallest interval of pitch the ear can detect and a singer or musical instrument can produce, and accordingly the 'Grama' system divides an octave into 22 parts.
The scale involves 256/243, 25/24 and 81/80 as fractions.
Note that ((81/80)^10) * ((256/243)^7) * ((25/24)^5) = 2.
The frequencies correspond to the ratios [1/1, 256/243, 16/15, 10/9, 9/8, 32/27, 6/5, 5/4, 81/64, 4/3, 27/20, 45/32, 729/512, 3/2, 128/81, 8/5, 5/3, 27/16, 16/9, 9/5, 15/8, 243/128, 2/1].
The start is A-equivalent note = 440 Hz. The initial term (rounded frequency of C-equivalent note) is calculated as (16/27) * 440 Hz = 260.7 Hz.

Crossrefs

Programs

  • PARI
    Ratios={[1/1, 256/243, 16/15, 10/9, 9/8, 32/27, 6/5, 5/4, 81/64, 4/3, 27/20, 45/32, 729/512, 3/2, 128/81, 8/5, 5/3, 27/16, 16/9, 9/5, 15/8, 243/128];}
    a(n)={n--; round(440*16/27*2^(n\22)*Ratios[n%22+1])} \\ Andrew Howroyd, Sep 27 2018
Showing 1-5 of 5 results.