cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A109128 Triangle read by rows: T(n,k) = T(n-1,k-1) + T(n-1,k) + 1 for 0

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 11, 7, 1, 1, 9, 19, 19, 9, 1, 1, 11, 29, 39, 29, 11, 1, 1, 13, 41, 69, 69, 41, 13, 1, 1, 15, 55, 111, 139, 111, 55, 15, 1, 1, 17, 71, 167, 251, 251, 167, 71, 17, 1, 1, 19, 89, 239, 419, 503, 419, 239, 89, 19, 1, 1, 21, 109, 329, 659, 923, 923, 659, 329, 109, 21, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 20 2005

Keywords

Comments

Eigensequence of the triangle = A001861. - Gary W. Adamson, Apr 17 2009

Examples

			Triangle begins as:
  1;
  1   1;
  1   3   1;
  1   5   5   1;
  1   7  11   7   1;
  1   9  19  19   9   1;
  1  11  29  39  29  11   1;
  1  13  41  69  69  41  13   1;
  1  15  55 111 139 111  55  15   1;
  1  17  71 167 251 251 167  71  17   1;
  1  19  89 239 419 503 419 239  89  19   1;
		

Crossrefs

Cf. A000325 (row sums).
Sequence m*binomial(n,k) - (m-1): A007318 (m=1), this sequence (m=2), A131060 (m=3), A131061 (m=4), A131063 (m=5), A131065 (m=6), A131067 (m=7), A168625 (m=8).

Programs

  • Haskell
    a109128 n k = a109128_tabl !! n !! k
    a109128_row n = a109128_tabl !! n
    a109128_tabl = iterate (\row -> zipWith (+)
       ([0] ++ row) (1 : (map (+ 1) $ tail row) ++ [0])) [1]
    -- Reinhard Zumkeller, Apr 10 2012
    
  • Magma
    [2*Binomial(n,k) -1: k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    A109128 := proc(n,k)
        2*binomial(n,k)-1 ;
    end proc: # R. J. Mathar, Jul 12 2016
  • Mathematica
    Table[2*Binomial[n,k] -1, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    [[2*binomial(n,k) -1 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 12 2020

Formula

T(n,k) = T(n-1,k-1) + T(n-1,k) + 1 with T(n,0) = T(n,n) = 1.
Sum_{k=0..n} T(n, k) = A000325(n+1) (row sums).
T(n, k) = 2*binomial(n,k) - 1. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Sep 30 2007
T(n, 1) = 2*n - 1 = A005408(n+1) for n>0.
T(n, 2) = n^2 + n - 1 = A028387(n-2) for n>1.
T(n, k) = Sum_{j=0..n-k} C(n-k,j)*C(k,j)*(2 - 0^j) for k <= n. - Paul Barry, Apr 27 2006
T(n,k) = A014473(n,k) + A007318(n,k), 0 <= k <= n. - Reinhard Zumkeller, Apr 10 2012
From G. C. Greubel, Apr 06 2024: (Start)
T(n, n-k) = T(n, k).
T(2*n, n) = A134760(n).
T(2*n-1, n) = A030662(n), for n >= 1.
Sum_{k=0..n-1} T(n, k) = A000295(n+1), for n >= 1.
Sum_{k=0..n} (-1)^k*T(n, k) = 2*[n=0] - A000035(n+1).
Sum_{k=0..n-1} (-1)^k*T(n, k) = A327767(n), for n >= 1.
Sum_{k=0..floor(n/2)} T(n-k, k) = A281362(n).
Sum_{k=0..floor((n-1)/2)} T(n-k, k) = A281362(n-1) - (1+(-1)^n)/2 for n >= 1.
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = b(n), where b(n) is the repeating pattern {1,1,0,-2,-3,-1,2,2,-1,-3,-2,0} with b(n) = b(n-12). (End)

Extensions

Offset corrected by Reinhard Zumkeller, Apr 10 2012

A131065 Triangle read by rows: T(n,k) = 6*binomial(n,k) - 5 for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 13, 13, 1, 1, 19, 31, 19, 1, 1, 25, 55, 55, 25, 1, 1, 31, 85, 115, 85, 31, 1, 1, 37, 121, 205, 205, 121, 37, 1, 1, 43, 163, 331, 415, 331, 163, 43, 1, 1, 49, 211, 499, 751, 751, 499, 211, 49, 1, 1, 55, 265, 715, 1255, 1507, 1255, 715, 265, 55, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums = A131066.
The matrix inverse starts:
1;
-1, 1;
6, -7, 1;
-66, 78, -13, 1;
1086, -1284, 216, -19, 1;
-23826, 28170, -4740, 420, -25, 1;
653406, -772536, 129990, -11520, 690, -31, 1; - R. J. Mathar, Mar 12 2013

Examples

			First few rows of the triangle are:
  1;
  1,  1;
  1,  7,  1;
  1, 13, 13,  1;
  1, 19, 31, 19,  1;
  1, 25, 55, 55, 25, 1;
...
		

Crossrefs

Programs

  • Magma
    [6*Binomial(n,k) -5: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    T := proc (n, k) if k <= n then 6*binomial(n, k)-5 else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # Emeric Deutsch, Jun 20 2007
  • Mathematica
    Table[6*Binomial[n,k]-5,{n,0,15},{k,0,n}]//Flatten (* Harvey P. Dale, May 15 2016 *)
  • Sage
    [[6*binomial(n,k) -5 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020

Formula

G.f.: (1-z-t*z+6*t*z^2)/((1-z)*(1-t*z)*(1-z-t*z)). - Emeric Deutsch, Jun 20 2007

Extensions

More terms from Emeric Deutsch, Jun 20 2007

A131060 3*A007318 - 2*A000012 as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 16, 10, 1, 1, 13, 28, 28, 13, 1, 1, 16, 43, 58, 43, 16, 1, 1, 19, 61, 103, 103, 61, 19, 1, 1, 22, 82, 166, 208, 166, 82, 22, 1, 1, 25, 106, 250, 376, 376, 250, 106, 25, 1, 1, 28, 133, 358, 628, 754, 628, 358, 133, 28, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums = A097813: (1, 2, 6, 16, 38, 84, 178, ...).

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  4,  1;
  1,  7,  7,  1;
  1, 10, 16, 10,  1;
  1, 13, 28, 28, 13,  1;
  1, 16, 43, 58, 43, 16,  1;
  ...
		

Crossrefs

Programs

  • Magma
    [3*Binomial(n,k) -2: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    A131060:= (n,k) -> 3*binomial(n, k)-2; seq(seq(A131060(n, k), k = 0..n), n = 0.. 10); # G. C. Greubel, Mar 12 2020
  • Mathematica
    T[n_, k_] = 3*Binomial[n, k] -2; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* Roger L. Bagula, Aug 20 2008 *)
  • Sage
    [[3*binomial(n,k) -2 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020

Formula

T(n,k) = 3*binomial(n,k) - 2. - Roger L. Bagula, Aug 20 2008

Extensions

More terms from Roger L. Bagula, Aug 20 2008

A131063 Triangle read by rows: T(n,k) = 5*binomial(n,k) - 4 for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 11, 11, 1, 1, 16, 26, 16, 1, 1, 21, 46, 46, 21, 1, 1, 26, 71, 96, 71, 26, 1, 1, 31, 101, 171, 171, 101, 31, 1, 1, 36, 136, 276, 346, 276, 136, 36, 1, 1, 41, 176, 416, 626, 626, 416, 176, 41, 1, 1, 46, 221, 596, 1046, 1256, 1046, 596, 221, 46, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums = A131064: (1, 2, 8, 24, 60, 136, 292, ...), the binomial transform of (1, 1, 5, 5, 5, ...).

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  6,  1;
  1, 11, 11,  1;
  1, 16, 26, 16,  1;
  1, 21, 46, 46, 21,  1;
  1, 26, 71, 96, 71, 26,  1;
  ...
		

Crossrefs

Programs

  • GAP
    Print(Flat(List([0..10],n->List([0..n],k->5*Binomial(n,k)-4)))); # Muniru A Asiru, Feb 21 2019
    
  • Magma
    [5*Binomial(n, k) -4: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    T := proc (n, k) if k <= n then 5*binomial(n, k)-4 else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # Emeric Deutsch, Jun 20 2007
  • Mathematica
    Table[5*Binomial[n,k] -4, {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    [[5*binomial(n, k) -4 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020

Formula

G.f.: (1-z-t*z+5*t*z^2)/((1-z)*(1-t*z)*(1-z-t*z)). - Emeric Deutsch, Jun 20 2007

Extensions

More terms from Emeric Deutsch, Jun 20 2007

A131067 Triangle read by rows: T(n,k) = 7*binomial(n,k) - 6 for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 15, 15, 1, 1, 22, 36, 22, 1, 1, 29, 64, 64, 29, 1, 1, 36, 99, 134, 99, 36, 1, 1, 43, 141, 239, 239, 141, 43, 1, 1, 50, 190, 386, 484, 386, 190, 50, 1, 1, 57, 246, 582, 876, 876, 582, 246, 57, 1, 1, 64, 309, 834, 1464, 1758, 1464, 834, 309, 64, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums = A131068: (1, 2, 10, 32, 82, 188, 406, ...), the binomial transform of (1, 1, 7, 7, 7, ...).

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  8,  1;
  1, 15, 15,  1;
  1, 22, 36, 22,  1;
  1, 29, 64, 64, 29, 1;
  ...
		

Crossrefs

Sequence m*binomial(n,k) - (m-1): A007318 (m=1), A109128 (m=2), A131060 (m=3), A131061 (m=4), A131063 (m=5), A131065 (m=6), this sequence (m=7), A131068 (m=8).

Programs

  • Magma
    [7*Binomial(n, k) -6: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    T := proc (n, k) if k <= n then 7*binomial(n, k)-6 else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # Emeric Deutsch, Jun 20 2007
  • Mathematica
    Table[7*Binomial[n, k] -6, {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    [[7*binomial(n, k) -6 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020

Formula

G.f.: G(t,z) = (1-z-t*z+7*t*z^2)/((1-z)*(1-t*z)*(1-z-t*z)). - Emeric Deutsch, Jun 20 2007

Extensions

More terms from Emeric Deutsch, Jun 20 2007

A123203 a(n) = 2^(n+1) - 3*n.

Original entry on oeis.org

1, 2, 7, 20, 49, 110, 235, 488, 997, 2018, 4063, 8156, 16345, 32726, 65491, 131024, 262093, 524234, 1048519, 2097092, 4194241, 8388542, 16777147, 33554360, 67108789, 134217650, 268435375, 536870828, 1073741737, 2147483558
Offset: 1

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

An elephant sequence, see A175654. For the corner squares just one A[5] vector, with decimal value 186, leads to this sequence. For the central square this vector leads to the companion sequence A036563. - Johannes W. Meijer, Aug 15 2010

Examples

			a(4) = 20, row sums of 4th row of triangle A131062: (1, 9, 9, 1).
a(4) = 20 = (1, 3, 3, 1) dot (1, 1, 4, 4) = (1 + 3 + 12 + 4).
		

Crossrefs

Programs

Formula

Binomial transform of [1, 1, 4, 4, 4, ...].
Equals row sums of triangle A131061.
From Johannes W. Meijer, Aug 15 2010; corrected by Colin Barker, Jul 28 2012: (Start)
a(n) = 2^(1+n) - 3*n.
a(n) = 3*A000295(n-1) + A000079(n-1).
(End)
G.f.: x*(1 - 2*x + 4*x^2)/((1-x)^2*(1-2*x)). - Colin Barker, Jul 28 2012
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). - Colin Barker, Jul 29 2012
E.g.f.: 2*exp(2*x) - 3*x*exp(x) - 2. - G. C. Greubel, Sep 14 2024

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Nov 15 2008
Title changed by G. C. Greubel, Sep 14 2024

A131064 Binomial transform of [1, 1, 5, 5, 5, ...].

Original entry on oeis.org

1, 2, 8, 24, 60, 136, 292, 608, 1244, 2520, 5076, 10192, 20428, 40904, 81860, 163776, 327612, 655288, 1310644, 2621360, 5242796, 10485672, 20971428, 41942944, 83885980, 167772056, 335544212, 671088528, 1342177164, 2684354440
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums of triangle A131063. - Emeric Deutsch, Jun 20 2007

Examples

			a(3) = 24 = sum of row 4 terms of A131063: (1 + 11 + 11 + 1).
a(3) = 24 = (1, 3, 3, 1) dot (1, 1, 5, 5).
		

Crossrefs

Programs

  • GAP
    Print(List([0..30],n->5*2^n-4*n-4)); # Muniru A Asiru, Feb 21 2019
    
  • Magma
    I:=[1, 2, 8]; [n le 3 select I[n] else 4*Self(n-1)-5*Self(n-2) + 2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 05 2012
    
  • Maple
    a := proc (n) options operator, arrow; 5*2^n-4*n-4 end proc: seq(a(n), n = 0 .. 30); # Emeric Deutsch, Jun 20 2007
  • Mathematica
    CoefficientList[Series[(1-2x+5x^2)/((1-2x)(1-x)^2),{x,0,40}],x] (* Vincenzo Librandi, Jul 05 2012 *)
    LinearRecurrence[{4,-5,2},{1,2,8},30] (* Harvey P. Dale, Dec 29 2014 *)
  • Sage
    [5*2^n -4*(n+1) for n in (0..30)] # G. C. Greubel, Mar 12 2020

Formula

From Emeric Deutsch, Jun 20 2007: (Start)
a(n) = 5*2^n - 4*(n + 1).
G.f.: (1-2*x+5*x^2)/((1-2*x)*(1-x)^2). (End)
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). - Vincenzo Librandi, Jul 05 2012
E.g.f.: 5*exp(2*x) - 4*(1+x)*exp(x). - G. C. Greubel, Mar 12 2020

Extensions

Corrected and extended by Emeric Deutsch, Jun 20 2007

A131066 Binomial transform of [1, 1, 6, 6, 6, ...].

Original entry on oeis.org

1, 2, 9, 28, 71, 162, 349, 728, 1491, 3022, 6089, 12228, 24511, 49082, 98229, 196528, 393131, 786342, 1572769, 3145628, 6291351, 12582802, 25165709, 50331528, 100663171, 201326462, 402653049, 805306228, 1610612591, 3221225322
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums of triangle A131065. - Emeric Deutsch, Jun 20 2007

Examples

			a(3) = 28 = sum of row 4 of triangle A131065: (1 + 13 + 13 + 1).
a(3) = 28 = (1, 3, 3, 1) dot (1, 1, 6, 6) = (1 + 3 + 18 + 6).
		

Crossrefs

Programs

  • GAP
    Print(List([0..30],n->6*2^n-5*n-5)); # Muniru A Asiru, Feb 21 2019
    
  • Magma
    [6*2^n -5*(n+1): n in [0..30]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    a := proc (n) options operator, arrow; 6*2^n-5*n-5 end proc: seq(a(n), n = 0 .. 30); # Emeric Deutsch, Jun 20 2007
  • Mathematica
    Table[6*2^n -5*(n+1), {n,0,30}] (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    [6*2^n -5*(n+1) for n in (0..30)] # G. C. Greubel, Mar 12 2020

Formula

From Emeric Deutsch, Jun 20 2007: (Start)
a(n) = 6*2^n - 5*(n + 1).
G.f.: (1 - 2*x + 6*x^2)/((1-2*x)*(1-x)^2). (End)
E.g.f.: 6*exp(2*x) - 5*(1 + x)*exp(x). - G. C. Greubel, Mar 12 2020
a(n) = 2*a(n - 1) + 5*n - 5. - Kritsada Moomuang, Jul 03 2020
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). - Wesley Ivan Hurt, Jul 10 2020

Extensions

Corrected and extended by Emeric Deutsch, Jun 20 2007

A131068 Binomial transform of [1, 1, 7, 7, 7, ...].

Original entry on oeis.org

1, 2, 10, 32, 82, 188, 406, 848, 1738, 3524, 7102, 14264, 28594, 57260, 114598, 229280, 458650, 917396, 1834894, 3669896, 7339906, 14679932, 29359990, 58720112, 117440362, 234880868, 469761886, 939523928, 1879048018, 3758096204
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums of triangle A131067. - Emeric Deutsch, Jun 20 2007

Examples

			a(3) = 32 = sum of row 4 terms of triangle A131067: (1 + 15 + 15 + 1).
a(3) = 32 = (1, 3, 3, 1) dot (1, 1, 7, 7) = (1 + 3 + 21 + 7).
		

Crossrefs

Programs

  • Magma
    I:=[1, 2, 10]; [n le 3 select I[n] else 4*Self(n-1)-5*Self(n-2) + 2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 05 2012
    
  • Maple
    a := proc (n) options operator, arrow; 7*2^n-6*n-6 end proc: seq(a(n), n = 0 .. 30); # Emeric Deutsch, Jun 20 2007
  • Mathematica
    Table[7*2^n -6*(n+1), {n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Nov 10 2008; modified by G. C. Greubel, Mar 12 2020 *)
    CoefficientList[Series[(1-2x+7x^2)/((1-2x)(1-x)^2),{x,0,40}],x] (* Vincenzo Librandi, Jul 05 2012 *)
  • PARI
    vector(31, n, my(m=n-1); 7*2^m -6*(m+1) ) \\ G. C. Greubel, Mar 12 2020
    
  • Sage
    [7*2^n -6*(n+1) for n in (0..30)] # G. C. Greubel, Mar 12 2020

Formula

From Emeric Deutsch, Jun 20 2007: (Start)
a(n) = 7*2^n - 6*(n + 1).
G.f.: (1 - 2*x + 7*x^2)/((1-2*x)*(1-x)^2). (End)
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). - Vincenzo Librandi, Jul 05 2012
E.g.f.: 7*exp(2*x) - 6*(1+x)*exp(x). - G. C. Greubel, Mar 12 2020

Extensions

Corrected and extended by Emeric Deutsch, Jun 20 2007

A168625 Triangle T(n,k) = 8*binomial(n,k) - 7 with columns 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 17, 17, 1, 1, 25, 41, 25, 1, 1, 33, 73, 73, 33, 1, 1, 41, 113, 153, 113, 41, 1, 1, 49, 161, 273, 273, 161, 49, 1, 1, 57, 217, 441, 553, 441, 217, 57, 1, 1, 65, 281, 665, 1001, 1001, 665, 281, 65, 1, 1, 73, 353, 953, 1673, 2009, 1673, 953, 353, 73, 1
Offset: 0

Views

Author

Roger L. Bagula, Dec 01 2009

Keywords

Comments

Triangle T(n,k): the coefficient [x^k] of the polynomial 8*(x+1)^n -7*( x^(n+1) - 1)/(x-1).

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  9,   1;
  1, 17,  17,   1;
  1, 25,  41,  25,    1;
  1, 33,  73,  73,   33,    1;
  1, 41, 113, 153,  113,   41,    1;
  1, 49, 161, 273,  273,  161,   49,   1;
  1, 57, 217, 441,  553,  441,  217,  57,   1;
  1, 65, 281, 665, 1001, 1001,  665, 281,  65,  1;
  1, 73, 353, 953, 1673, 2009, 1673, 953, 353, 73, 1;
		

Crossrefs

Sequence m*binomial(n,k) - (m-1): A007318 (m=1), A109128 (m=2), A131060 (m=3), A131061 (m=4), A131063 (m=5), A131065 (m=6), A131067 (m=7), this sequence (m=8).

Programs

  • Magma
    [8*Binomial(n, k) -7: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    A168625:= (n,k) -> 8*binomial(n, k) -7; seq(seq(A168625(n, k), k = 0..n), n = 0.. 10); # G. C. Greubel, Mar 12 2020
  • Mathematica
    m = 8; p[x_, n_]:= FullSimplify[ExpandAll[m*(x+1)^n -(m-1)(x^(n+1) -1)/(x-1)]];
    Table[CoefficientList[p[x, n], x], {n,0,10}]//Flatten
    Table[8*Binomial[n, k] -7, {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    [[8*binomial(n, k) -7 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020

Formula

T(n,k) = [x^k] ( 8*(x+1)^n-7*Sum_{s=0..n} x^s ) = 8*A007318(n,k) - 7. - R. J. Mathar, Sep 02 2011

Extensions

Definition simplified by R. J. Mathar, Sep 02 2011
Showing 1-10 of 12 results. Next