cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A144061 Eigentriangle generated from A109128, row sums = expansion of {2(exp(x)-1)}.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 10, 6, 1, 7, 22, 42, 22, 1, 9, 38, 114, 198, 94, 1, 11, 58, 234, 638, 1034, 454, 1, 13, 82, 414, 1518, 3854, 5902, 2430, 1, 15, 110, 666, 3058, 10434, 24970, 36450, 14214, 1, 17, 142, 1002, 5522, 23594, 75818, 172530, 241638, 89918
Offset: 1

Views

Author

Keywords

Comments

Row sums = A001861: (1, 2, 6, 22, 94, 454, 2430,...) = expansion of {2(exp(x)-1)}
Right border = A001861 shifted: (1, 1, 2, 6, 22, 94,...).
Sum of n-th row terms = rightmost term of next row.

Examples

			First few rows of the triangle =
1;
1, 1;
1, 3, 2;
1, 5, 10, 6;
1, 7, 22, 42, 22;
1, 9, 38, 114, 198, 94;
1, 11, 58, 234, 638, 1034, 454;
1, 13, 82, 414, 1518, 3854, 5902, 2430;
1, 15, 110, 666, 3058, 10434, 24970, 36450, 14214;
...
Example: row 3 = (1, 5, 10, 6) = termwise products of (1, 5, 5, 1) and (1, 1, 2, 6), where (1, 5, 5, 1) = row 3 of triangle A109128 and (1, 1, 2, 6) = the first 4 terms of A001861 shifted.
		

Crossrefs

Formula

T(n,k) = A109128(n,k)*A001861(k-1).
A109128 = (2*binomial(n,k) - 1): (1; 1,1; 1,3,1; 1,5,5,1;...).
A001861(k-1) = A001861 shifted one place, = (1, 1, 2, 6, 22, 94, 454,...).

A159040 A triangle of polynomial coefficients: p(x,n)=Sum[x^i*If[i == Floor[n/2] && Mod[n, 2] == 0, 0, If[i <= (less than or equal to) Floor[n/2], (-1)^i*A109128[n, i], -(-1)^(n - i)* A109128[n, i]]], {i, 0, n}]/(1 - x).

Original entry on oeis.org

1, 1, 1, 1, -4, 1, 1, -6, -6, 1, 1, -8, 11, -8, 1, 1, -10, 19, 19, -10, 1, 1, -12, 29, -40, 29, -12, 1, 1, -14, 41, -70, -70, 41, -14, 1, 1, -16, 55, -112, 139, -112, 55, -16, 1, 1, -18, 71, -168, 251, 251, -168, 71, -18, 1, 1, -20, 89, -240, 419, -504, 419, -240, 89, -20, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 03 2009

Keywords

Comments

Row sums are:
{1, 2, -2, -10, -3, 20, -4, -84, -5, 274, -6,...}.

Examples

			{1},
{1, 1},
{1, -4, 1},
{1, -6, -6, 1},
{1, -8, 11, -8, 1},
{1, -10, 19, 19, -10, 1},
{1, -12, 29, -40, 29, -12, 1},
{1, -14, 41, -70, -70, 41, -14, 1},
{1, -16, 55, -112, 139, -112, 55, -16, 1},
{1, -18, 71, -168, 251, 251, -168, 71, -18, 1},
{1, -20, 89, -240, 419, -504, 419, -240, 89, -20, 1}
		

Crossrefs

Programs

  • Mathematica
    Clear[A, p, n, i];
    A[n_, 0] := 1;
    A[n_, n_] := 1;
    A[n_, k_] := A[n - 1, k - 1] + A[n - 1, k] + 1;
    p[x_, n_] = Sum[x^i*If[i == Floor[n/2] && Mod[n, 2] == 0, 0, If[i <= Floor[n/2], (-1)^i*A[n, i], -(-1)^(n - i)*A[n, i]]], {i, 0, n}]/(1 - x);
    Table[CoefficientList[FullSimplify[p[x, n]], x], {n, 1, 11}];
    Flatten[%]

Formula

p(x,n)=Sum[x^i*If[i == Floor[n/2] && Mod[n, 2] == 0, 0, If[i <= (less than or equal to) Floor[n/2], (-1)^i*A109128[n, i], -(-1)^(n - i)* A109128[n, i]]], {i, 0, n}]/(1 - x);
t(n,m)=coefficients(p(x,n),x)

A028387 a(n) = n + (n+1)^2.

Original entry on oeis.org

1, 5, 11, 19, 29, 41, 55, 71, 89, 109, 131, 155, 181, 209, 239, 271, 305, 341, 379, 419, 461, 505, 551, 599, 649, 701, 755, 811, 869, 929, 991, 1055, 1121, 1189, 1259, 1331, 1405, 1481, 1559, 1639, 1721, 1805, 1891, 1979, 2069, 2161, 2255, 2351, 2449, 2549, 2651
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the least k > a(n) + 1 such that A000217(a(n)) + A000217(k) is a square. - David Wasserman, Jun 30 2005
Values of Fibonacci polynomial n^2 - n - 1 for n = 2, 3, 4, 5, ... - Artur Jasinski, Nov 19 2006
A127701 * [1, 2, 3, ...]. - Gary W. Adamson, Jan 24 2007
Row sums of triangle A135223. - Gary W. Adamson, Nov 23 2007
Equals row sums of triangle A143596. - Gary W. Adamson, Aug 26 2008
a(n-1) gives the number of n X k rectangles on an n X n chessboard (for k = 1, 2, 3, ..., n). - Aaron Dunigan AtLee, Feb 13 2009
sqrt(a(0) + sqrt(a(1) + sqrt(a(2) + sqrt(a(3) + ...)))) = sqrt(1 + sqrt(5 + sqrt(11 + sqrt(19 + ...)))) = 2. - Miklos Kristof, Dec 24 2009
When n + 1 is prime, a(n) gives the number of irreducible representations of any nonabelian group of order (n+1)^3. - Andrew Rupinski, Mar 17 2010
a(n) = A176271(n+1, n+1). - Reinhard Zumkeller, Apr 13 2010
The product of any 4 consecutive integers plus 1 is a square (see A062938); the terms of this sequence are the square roots. - Harvey P. Dale, Oct 19 2011
Or numbers not expressed in the form m + floor(sqrt(m)) with integer m. - Vladimir Shevelev, Apr 09 2012
Left edge of the triangle in A214604: a(n) = A214604(n+1,1). - Reinhard Zumkeller, Jul 25 2012
Another expression involving phi = (1 + sqrt(5))/2 is a(n) = (n + phi)(n + 1 - phi). Therefore the numbers in this sequence, even if they are prime in Z, are not prime in Z[phi]. - Alonso del Arte, Aug 03 2013
a(n-1) = n*(n+1) - 1, n>=0, with a(-1) = -1, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 5 for b = 2*n+1. In general D = b^2 - 4ac > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013
a(n) has prime factors given by A038872. - Richard R. Forberg, Dec 10 2014
A253607(a(n)) = -1. - Reinhard Zumkeller, Jan 05 2015
An example of a quadratic sequence for which the continued square root map (see A257574) produces the number 2. There are infinitely many sequences with this property - another example is A028387. See Popular Computing link. - N. J. A. Sloane, May 03 2015
Left edge of the triangle in A260910: a(n) = A260910(n+2,1). - Reinhard Zumkeller, Aug 04 2015
Numbers m such that 4m+5 is a square. - Bruce J. Nicholson, Jul 19 2017
The numbers represented as 131 in base n: 131_4 = 29, 131_5 = 41, ... . If 'digits' larger than the base are allowed then 131_2 = 11 and 131_1 = 5 also. - Ron Knott, Nov 14 2017
From Klaus Purath, Mar 18 2019: (Start)
Let m be a(n) or a prime factor of a(n). Then, except for 1 and 5, there are, if m is a prime, exactly two squares y^2 such that the difference y^2 - m contains exactly one pair of factors {x,z} such that the following applies: x*z = y^2 - m, x + y = z with
x < y, where {x,y,z} are relatively prime numbers. {x,y,z} are the initial values of a sequence of the Fibonacci type. Thus each a(n) > 5, if it is a prime, and each prime factor p > 5 of an a(n) can be assigned to exactly two sequences of the Fibonacci type. a(0) = 1 belongs to the original Fibonacci sequence and a(1) = 5 to the Lucas sequence.
But also the reverse assignment applies. From any sequence (f(i)) of the Fibonacci type we get from its 3 initial values by f(i)^2 - f(i-1)*f(i+1) with f(i-1) < f(i) a term a(n) or a prime factor p of a(n). This relation is also valid for any i. In this case we get the absolute value |a(n)| or |p|. (End)
a(n-1) = 2*T(n) - 1, for n>=1, with T = A000217, is a proper subsequence of A089270, and the terms are 0,-1,+1 (mod 5). - Wolfdieter Lang, Jul 05 2019
a(n+1) is the number of wedged n-dimensional spheres in the homotopy of the neighborhood complex of Kneser graph KG_{2,n}. Here, KG_{2,n} is a graph whose vertex set is the collection of subsets of cardinality 2 of set {1,2,...,n+3,n+4} and two vertices are adjacent if and only if they are disjoint. - Anurag Singh, Mar 22 2021
Also the number of squares between (n+2)^2 and (n+2)^4. - Karl-Heinz Hofmann, Dec 07 2021
(x, y, z) = (A001105(n+1), -a(n-1), -a(n)) are solutions of the Diophantine equation x^3 + 4*y^3 + 4*z^3 = 8. - XU Pingya, Apr 25 2022
The least significant digit of terms of this sequence cycles through 1, 5, 1, 9, 9. - Torlach Rush, Jun 05 2024

Examples

			From _Ilya Gutkovskiy_, Apr 13 2016: (Start)
Illustration of initial terms:
                                        o               o
                        o           o   o o           o o
            o       o   o o       o o   o o o       o o o
    o   o   o o   o o   o o o   o o o   o o o o   o o o o
o   o o o   o o o o o   o o o o o o o   o o o o o o o o o
n=0  n=1       n=2           n=3               n=4
(End)
From _Klaus Purath_, Mar 18 2019: (Start)
Examples:
a(0) = 1: 1^1-0*1 = 1, 0+1 = 1 (Fibonacci A000045).
a(1) = 5: 3^2-1*4 = 5, 1+3 = 4 (Lucas A000032).
a(2) = 11: 4^2-1*5 = 11, 1+4 = 5 (A000285); 5^2-2*7 = 11, 2+5 = 7 (A001060).
a(3) = 19: 5^2-1*6 = 19, 1+5 = 6 (A022095); 7^2-3*10 = 19, 3+7 = 10 (A022120).
a(4) = 29: 6^2-1*7 = 29, 1+6 = 7 (A022096); 9^2-4*13 = 29, 4+9 = 13 (A022130).
a(11)/5 = 31: 7^2-2*9 = 31, 2+7 = 9 (A022113); 8^2-3*11 = 31, 3+8 = 11 (A022121).
a(24)/11 = 59: 9^2-2*11 = 59, 2+9 = 11 (A022114); 12^2-5*17 = 59, 5+12 = 17 (A022137).
(End)
		

Crossrefs

Complement of A028392. Third column of array A094954.
Cf. A000217, A002522, A062392, A062786, A127701, A135223, A143596, A052905, A162997, A062938 (squares of this sequence).
A110331 and A165900 are signed versions.
Cf. A002327 (primes), A094210.
Frobenius number for k successive numbers: this sequence (k=2), A079326 (k=3), A138984 (k=4), A138985 (k=5), A138986 (k=6), A138987 (k=7), A138988 (k=8).

Programs

Formula

a(n) = sqrt(A062938(n)). - Floor van Lamoen, Oct 08 2001
a(0) = 1, a(1) = 5, a(n) = (n+1)*a(n-1) - (n+2)*a(n-2) for n > 1. - Gerald McGarvey, Sep 24 2004
a(n) = A105728(n+2, n+1). - Reinhard Zumkeller, Apr 18 2005
a(n) = A109128(n+2, 2). - Reinhard Zumkeller, Jun 20 2005
a(n) = 2*T(n+1) - 1, where T(n) = A000217(n). - Gary W. Adamson, Aug 15 2007
a(n) = A005408(n) + A002378(n); A084990(n+1) = Sum_{k=0..n} a(k). - Reinhard Zumkeller, Aug 20 2007
Binomial transform of [1, 4, 2, 0, 0, 0, ...] = (1, 5, 11, 19, ...). - Gary W. Adamson, Sep 20 2007
G.f.: (1+2*x-x^2)/(1-x)^3. a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - R. J. Mathar, Jul 11 2009
a(n) = (n + 2 + 1/phi) * (n + 2 - phi); where phi = 1.618033989... Example: a(3) = 19 = (5 + .6180339...) * (3.381966...). Cf. next to leftmost column in A162997 array. - Gary W. Adamson, Jul 23 2009
a(n) = a(n-1) + 2*(n+1), with n > 0, a(0) = 1. - Vincenzo Librandi, Nov 18 2010
For k < n, a(n) = (k+1)*a(n-k) - k*a(n-k-1) + k*(k+1); e.g., a(5) = 41 = 4*11 - 3*5 + 3*4. - Charlie Marion, Jan 13 2011
a(n) = lower right term in M^2, M = the 2 X 2 matrix [1, n; 1, (n+1)]. - Gary W. Adamson, Jun 29 2011
G.f.: (x^2-2*x-1)/(x-1)^3 = G(0) where G(k) = 1 + x*(k+1)*(k+4)/(1 - 1/(1 + (k+1)*(k+4)/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 16 2012
Sum_{n>0} 1/a(n) = 1 + Pi*tan(sqrt(5)*Pi/2)/sqrt(5). - Enrique Pérez Herrero, Oct 11 2013
E.g.f.: exp(x) (1+4*x+x^2). - Tom Copeland, Dec 02 2013
a(n) = A005408(A000217(n)). - Tony Foster III, May 31 2016
From Amiram Eldar, Jan 29 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = -Pi*sec(sqrt(5)*Pi/2).
Product_{n>=1} (1 - 1/a(n)) = -Pi*sec(sqrt(5)*Pi/2)/6. (End)
a(5*n+1)/5 = A062786(n+1). - Torlach Rush, Jun 05 2024

Extensions

Minor edits by N. J. A. Sloane, Jul 04 2010, following suggestions from the Sequence Fans Mailing List

A000325 a(n) = 2^n - n.

Original entry on oeis.org

1, 1, 2, 5, 12, 27, 58, 121, 248, 503, 1014, 2037, 4084, 8179, 16370, 32753, 65520, 131055, 262126, 524269, 1048556, 2097131, 4194282, 8388585, 16777192, 33554407, 67108838, 134217701, 268435428, 536870883, 1073741794, 2147483617
Offset: 0

Views

Author

Rosario Salamone (Rosario.Salamone(AT)risc.uni-linz.ac.at)

Keywords

Comments

Number of permutations of degree n with at most one fall; called "Grassmannian permutations" by Lascoux and Schützenberger. - Axel Kohnert (Axel.Kohnert(AT)uni-bayreuth.de)
Number of different permutations of a deck of n cards that can be produced by a single shuffle. [DeSario]
Number of Dyck paths of semilength n having at most one long ascent (i.e., ascent of length at least two). Example: a(4)=12 because among the 14 Dyck paths of semilength 4, the only paths that have more than one long ascent are UUDDUUDD and UUDUUDDD (each with two long ascents). Here U = (1, 1) and D = (1, -1). Also number of ordered trees with n edges having at most one branch node (i.e., vertex of outdegree at least two). - Emeric Deutsch, Feb 22 2004
Number of {12,1*2*,21*}-avoiding signed permutations in the hyperoctahedral group.
Number of 1342-avoiding circular permutations on [n+1].
2^n - n is the number of ways to partition {1, 2, ..., n} into arithmetic progressions, where in each partition all the progressions have the same common difference and have lengths at least 1. - Marty Getz (ffmpg1(AT)uaf.edu) and Dixon Jones (fndjj(AT)uaf.edu), May 21 2005
if b(0) = x and b(n) = b(n-1) + b(n-1)^2*x^(n-2) for n > 0, then b(n) is a polynomial of degree a(n). - Michael Somos, Nov 04 2006
The chromatic invariant of the Mobius ladder graph M_n for n >= 2. - Jonathan Vos Post, Aug 29 2008
Dimension sequence of the dual alternative operad (i.e., associative and satisfying the identity xyz + yxz + zxy + xzy + yzx + zyx = 0) over the field of characteristic 3. - Pasha Zusmanovich, Jun 09 2009
An elephant sequence, see A175654. For the corner squares six A[5] vectors, with decimal values between 26 and 176, lead to this sequence (without the first leading 1). For the central square these vectors lead to the companion sequence A168604. - Johannes W. Meijer, Aug 15 2010
a(n+1) is also the number of order-preserving and order-decreasing partial isometries (of an n-chain). - Abdullahi Umar, Jan 13 2011
A040001(n) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, May 12 2012
A130103(n+1) = p(n+1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n. - Michael Somos, May 12 2012
The number of labeled graphs with n vertices whose vertex set can be partitioned into a clique and a set of isolated points. - Alex J. Best, Nov 20 2012
For n > 0, a(n) is a B_2 sequence. - Thomas Ordowski, Sep 23 2014
See coefficients of the linear terms of the polynomials of the table on p. 10 of the Getzler link. - Tom Copeland, Mar 24 2016
Consider n points lying on a circle, then for n>=2 a(n-1) is the maximum number of ways to connect two points with non-intersecting chords. - Anton Zakharov, Dec 31 2016
Also the number of cliques in the (n-1)-triangular honeycomb rook graph. - Eric W. Weisstein, Jul 14 2017
From Eric M. Schmidt, Jul 17 2017: (Start)
Number of sequences (e(1), ..., e(n)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) != e(j) < e(k). [Martinez and Savage, 2.7]
Number of sequences (e(1), ..., e(n)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i), e(j), e(k) pairwise distinct. [Martinez and Savage, 2.7]
Number of sequences (e(1), ..., e(n)), 0 <= e(i) < i, such that there is no triple i < j < k with e(j) >= e(k) and e(i) != e(k) pairwise distinct. [Martinez and Savage, 2.7]
(End)
Number of F-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are F-equivalent iff the positions of pattern F are identical in these paths. - Sergey Kirgizov, Apr 08 2018
From Gus Wiseman, Feb 10 2019: (Start)
Also the number of connected partitions of an n-cycle. For example, the a(1) = 1 through a(4) = 12 connected partitions are:
{{1}} {{12}} {{123}} {{1234}}
{{1}{2}} {{1}{23}} {{1}{234}}
{{12}{3}} {{12}{34}}
{{13}{2}} {{123}{4}}
{{1}{2}{3}} {{124}{3}}
{{134}{2}}
{{14}{23}}
{{1}{2}{34}}
{{1}{23}{4}}
{{12}{3}{4}}
{{14}{2}{3}}
{{1}{2}{3}{4}}
(End)
Number of subsets of n-set without the single-element subsets. - Yuchun Ji, Jul 16 2019
For every prime p, there are infinitely many terms of this sequence that are divisible by p (see IMO Compendium link and Doob reference). Corresponding indices n are: for p = 2, even numbers A299174; for p = 3, A047257; for p = 5, A349767. - Bernard Schott, Dec 10 2021
Primes are in A081296 and corresponding indices in A048744. - Bernard Schott, Dec 12 2021

Examples

			G.f. = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 27*x^5 + 58*x^6 + 121*x^7 + ...
		

References

  • Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 4, 1983, page 158, 1993.

Crossrefs

Column 1 of triangle A008518.
Row sum of triangles A184049 and A184050.

Programs

  • Haskell
    a000325 n = 2 ^ n - n
    a000325_list = zipWith (-) a000079_list [0..]
    -- Reinhard Zumkeller, Jul 17 2012
    
  • Magma
    [2^n - n: n in [0..35]]; // Vincenzo Librandi, May 13 2011
    
  • Maple
    A000325 := proc(n) option remember; if n <=1 then n+1 else 2*A000325(n-1)+n-1; fi; end;
    g:=1/(1-2*z): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)-n, n=0..31); # Zerinvary Lajos, Jan 09 2009
  • Mathematica
    Table[2^n - n, {n, 0, 39}] (* Alonso del Arte, Sep 15 2014 *)
    LinearRecurrence[{4, -5, 2}, {1, 2, 5}, {0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
  • PARI
    {a(n) = 2^n - n}; /* Michael Somos, Nov 04 2006 */
    
  • Python
    def A000325(n): return (1<Chai Wah Wu, Jan 11 2023

Formula

a(n+1) = 2*a(n) + n - 1, a(0) = 1. - Reinhard Zumkeller, Apr 12 2003
Binomial transform of 1, 0, 1, 1, 1, .... The sequence starting 1, 2, 5, ... has a(n) = 1 + n + 2*Sum_{k=2..n} binomial(n, k) = 2^(n+1) - n - 1. This is the binomial transform of 1, 1, 2, 2, 2, 2, .... a(n) = 1 + Sum_{k=2..n} C(n, k). - Paul Barry, Jun 06 2003
G.f.: (1-3x+3x^2)/((1-2x)*(1-x)^2). - Emeric Deutsch, Feb 22 2004
A107907(a(n+2)) = A000051(n+2) for n > 0. - Reinhard Zumkeller, May 28 2005
a(n+1) = sum of n-th row of the triangle in A109128. - Reinhard Zumkeller, Jun 20 2005
Row sums of triangle A133116. - Gary W. Adamson, Sep 14 2007
G.f.: 1 / (1 - x / (1 - x / ( 1 - x / (1 + x / (1 - 2*x))))). - Michael Somos, May 12 2012
First difference is A000225. PSUM transform is A084634. - Michael Somos, May 12 2012
a(n) = [x^n](B(x)^n-B(x)^(n-1)), n>0, a(0)=1, where B(x) = (1+2*x+sqrt(1+4*x^2))/2. - Vladimir Kruchinin, Mar 07 2014
E.g.f.: (exp(x) - x)*exp(x). - Ilya Gutkovskiy, Aug 07 2016
a(n) = A125128(n) - A000225(n) + 1. - Miquel Cerda, Aug 12 2016
a(n) = 2*A125128(n) - A095151(n) + 1. - Miquel Cerda, Aug 12 2016
a(n) = A079583(n-1) - A000225(n-1). - Miquel Cerda, Aug 15 2016
a(n)^2 - 4*a(n-1)^2 = (n-2)*(a(n)+2*a(n-1)). - Yuchun Ji, Jul 13 2018
a(n) = 2^(-n) * A186947(n) = 2^n * A002064(-n) for all n in Z. - Michael Somos, Jul 18 2018
a(2^n) = (2^a(n) - 1)*2^n. - Lorenzo Sauras Altuzarra, Feb 01 2022

A001861 Expansion of e.g.f. exp(2*(exp(x) - 1)).

Original entry on oeis.org

1, 2, 6, 22, 94, 454, 2430, 14214, 89918, 610182, 4412798, 33827974, 273646526, 2326980998, 20732504062, 192982729350, 1871953992254, 18880288847750, 197601208474238, 2142184050841734, 24016181943732414, 278028611833689478, 3319156078802044158, 40811417293301014150
Offset: 0

Views

Author

Keywords

Comments

Values of Bell polynomials: ways of placing n labeled balls into n unlabeled (but 2-colored) boxes.
First column of the square of the matrix exp(P)/exp(1) given in A011971. - Gottfried Helms, Mar 30 2007
Base matrix in A011971, second power in A078937, third power in A078938, fourth power in A078939. - Gottfried Helms, Apr 08 2007
Equals row sums of triangle A144061. - Gary W. Adamson, Sep 09 2008
Equals eigensequence of triangle A109128. - Gary W. Adamson, Apr 17 2009
Hankel transform is A108400. - Paul Barry, Apr 29 2009
The number of ways of putting n labeled balls into a set of bags and then putting the bags into 2 labeled boxes. An example is given below. - Peter Bala, Mar 23 2013
The f-vectors of n-dimensional hypercube are given by A038207 = exp[M*B(.,2)] = exp[M*A001861(.)] where M = A238385-I and (B(.,x))^n = B(n,x) are the Bell polynomials (cf. A008277). - Tom Copeland, Apr 17 2014
Moments of the Poisson distribution with mean 2. - Vladimir Reshetnikov, May 17 2016
Exponential self-convolution of Bell numbers (A000110). - Vladimir Reshetnikov, Oct 06 2016

Examples

			a(2) = 6: The six ways of putting 2 balls into bags (denoted by { }) and then into 2 labeled boxes (denoted by [ ]) are
01: [{1,2}] [ ];
02: [ ] [{1,2}];
03: [{1}] [{2}];
04: [{2}] [{1}];
05: [{1} {2}] [ ];
06: [ ] [{1} {2}].
- _Peter Bala_, Mar 23 2013
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For boxes of 1 color, see A000110, for 3 colors see A027710, for 4 colors see A078944, for 5 colors see A144180, for 6 colors see A144223, for 7 colors see A144263, for 8 colors see A221159.
First column of A078937.
Equals 2*A035009(n), n>0.
Row sums of A033306, A036073, A049020, and A144061.

Programs

  • Magma
    [&+[2^k*StirlingSecond(n, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, May 18 2019
  • Maple
    A001861:=n->add(Stirling2(n,k)*2^k, k=0..n); seq(A001861(n), n=0..20); # Wesley Ivan Hurt, Apr 18 2014
    # second Maple program:
    b:= proc(n, m) option remember;
         `if`(n=0, 2^m, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    Table[Sum[StirlingS2[n, k]*2^k, {k, 0, n}], {n, 0, 21}] (* Geoffrey Critzer, Oct 06 2009 *)
    mx = 16; p = 1; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[BellB[n, 2], {n, 0, 20}] (* Vaclav Kotesovec, Jan 06 2013 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(exp(2*(exp(x+x*O(x^n))-1)),n))
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, 2^m*x^m/prod(k=1,m,1-k*x +x*O(x^n))), n)} /* Paul D. Hanna, Feb 15 2012 */
    
  • PARI
    {a(n) = sum(k=0, n, 2^k*stirling(n, k, 2))} \\ Seiichi Manyama, Jul 28 2019
    
  • Sage
    expnums(30, 2) # Zerinvary Lajos, Jun 26 2008
    

Formula

a(n) = Sum_{k=0..n} 2^k*Stirling2(n, k). - Emeric Deutsch, Oct 20 2001
a(n) = exp(-2)*Sum_{k>=1} 2^k*k^n/k!. - Benoit Cloitre, Sep 25 2003
G.f. satisfies 2*(x/(1-x))*A(x/(1-x)) = A(x) - 1; twice the binomial transform equals the sequence shifted one place left. - Paul D. Hanna, Dec 08 2003
PE = exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,1]. - Gottfried Helms, Apr 08 2007
G.f.: 1/(1-2x-2x^2/(1-3x-4x^2/(1-4x-6x^2/(1-5x-8x^2/(1-6x-10x^2/(1-... (continued fraction). - Paul Barry, Apr 29 2009
O.g.f.: Sum_{n>=0} 2^n*x^n / Product_{k=1..n} (1-k*x). - Paul D. Hanna, Feb 15 2012
a(n) ~ exp(-2-n+n/LambertW(n/2))*n^n/LambertW(n/2)^(n+1/2). - Vaclav Kotesovec, Jan 06 2013
G.f.: (G(0) - 1)/(x-1)/2 where G(k) = 1 - 2/(1-k*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
G.f.: 1/Q(0) where Q(k) = 1 + x*k - x - x/(1 - 2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 07 2013
G.f.: ((1+x)/Q(0)-1)/(2*x), where Q(k) = 1 - (k+1)*x - 2*(k+1)*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: T(0)/(1-2*x), where T(k) = 1 - 2*x^2*(k+1)/( 2*x^2*(k+1) - (1-2*x-x*k)*(1-3*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 24 2013
a(n) = Sum_{k=0..n} A033306(n,k) = Sum_{k=0..n} binomial(n,k)*Bell(k)*Bell(n-k), where Bell = A000110 (see Motzkin, p. 170). - Danny Rorabaugh, Oct 18 2015
a(0) = 1 and a(n) = 2 * Sum_{k=0..n-1} binomial(n-1,k)*a(k) for n > 0. - Seiichi Manyama, Sep 25 2017 [corrected by Ilya Gutkovskiy, Jul 12 2020]

A014473 Pascal's triangle - 1: Triangle read by rows: T(n, k) = A007318(n, k) - 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 5, 3, 0, 0, 4, 9, 9, 4, 0, 0, 5, 14, 19, 14, 5, 0, 0, 6, 20, 34, 34, 20, 6, 0, 0, 7, 27, 55, 69, 55, 27, 7, 0, 0, 8, 35, 83, 125, 125, 83, 35, 8, 0, 0, 9, 44, 119, 209, 251, 209, 119, 44, 9, 0, 0, 10, 54, 164, 329, 461, 461, 329, 164, 54, 10, 0
Offset: 0

Views

Author

Keywords

Comments

Indexed as a square array A(n,k): If X is an (n+k)-set and Y a fixed k-subset of X then A(n,k) is equal to the number of n-subsets of X intersecting Y. - Peter Luschny, Apr 20 2012

Examples

			Triangle begins:
   0;
   0, 0;
   0, 1,  0;
   0, 2,  2,  0;
   0, 3,  5,  3,  0;
   0, 4,  9,  9,  4,  0;
   0, 5, 14, 19, 14,  5, 0;
   0, 6, 20, 34, 34, 20, 6, 0;
   ...
Seen as a square array read by antidiagonals:
  [0] 0, 0,  0,  0,   0,   0,   0,    0,    0,    0,    0,     0, ... A000004
  [1] 0, 1,  2,  3,   4,   5,   6,    7,    8,    9,   10,    11, ... A001477
  [2] 0, 2,  5,  9,  14,  20,  27,   35,   44,   54,   65,    77, ... A000096
  [3] 0, 3,  9, 19,  34,  55,  83,  119,  164,  219,  285,   363, ... A062748
  [4] 0, 4, 14, 34,  69, 125, 209,  329,  494,  714, 1000,  1364, ... A063258
  [5] 0, 5, 20, 55, 125, 251, 461,  791, 1286, 2001, 3002,  4367, ... A062988
  [6] 0, 6, 27, 83, 209, 461, 923, 1715, 3002, 5004, 8007, 12375, ... A124089
		

Crossrefs

Triangle without zeros: A014430.
Related: A323211 (A007318(n, k) + 1).
A000295 (row sums), A059841 (alternating row sums), A030662(n-1) (central terms).
Columns include A000096, A062748, A062988, A063258.
Diagonals of A(n, n+d): A030662 (d=0), A010763 (d=1), A322938 (d=2).

Programs

  • Haskell
    a014473 n k = a014473_tabl !! n !! k
    a014473_row n = a014473_tabl !! n
    a014473_tabl = map (map (subtract 1)) a007318_tabl
    -- Reinhard Zumkeller, Apr 10 2012
    
  • Magma
    [Binomial(n,k)-1: k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 08 2024
    
  • Maple
    with(combstruct): for n from 0 to 11 do seq(-1+count(Combination(n), size=m), m = 0 .. n) od; # Zerinvary Lajos, Apr 09 2008
    # The rows of the square array:
    Arow := proc(n, len) local gf, ser;
    gf := (x - 1)^(-n - 1) + (-1)^(n + 1)/(x*(x - 1));
    ser := series(gf, x, len+2): seq((-1)^(n+1)*coeff(ser, x, j), j=0..len) end:
    for n from 0 to 9 do lprint([n], Arow(n, 12)) od; # Peter Luschny, Feb 13 2019
  • Mathematica
    Table[Binomial[n,k] -1, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2024 *)
  • SageMath
    flatten([[binomial(n,k)-1 for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 08 2024

Formula

G.f.: x^2*y/((1 - x)*(1 - x*y)*(1 - x*(1 + y))). - Ralf Stephan, Jan 24 2005
T(n,k) = A109128(n,k) - A007318(n,k), 0 <= k <= n. - Reinhard Zumkeller, Apr 10 2012
T(n, k) = T(n-1, k-1) + T(n-1, k) + 1, 0 < k < n with T(n, 0) = T(n, n) = 0. - Reinhard Zumkeller, Jul 18 2015
If seen as a square array read by antidiagonals the generating function of row n is: G(n) = (x - 1)^(-n - 1) + (-1)^(n + 1)/(x*(x - 1)). - Peter Luschny, Feb 13 2019
From G. C. Greubel, Apr 08 2024: (Start)
T(n, n-k) = T(n, k).
Sum_{k=0..floor(n/2)} T(n-k, k) = A129696(n-2).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = b(n-1), where b(n) is the repeating pattern {0, 0, -1, -2, -1, 1, 1, -1, -2, -1, 0, 0}_{n=0..11}, with b(n) = b(n-12). (End)

Extensions

More terms from Erich Friedman

A131061 Triangle read by rows: T(n,k) = 4*binomial(n,k) - 3 for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 9, 9, 1, 1, 13, 21, 13, 1, 1, 17, 37, 37, 17, 1, 1, 21, 57, 77, 57, 21, 1, 1, 25, 81, 137, 137, 81, 25, 1, 1, 29, 109, 221, 277, 221, 109, 29, 1, 1, 33, 141, 333, 501, 501, 333, 141, 33, 1, 1, 37, 177, 477, 837, 1005, 837, 477, 177, 37, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums = A131062: (1, 2, 7, 20, 49, 110, 235, ...); the binomial transform of (1, 1, 4, 4, 4, ...).
Triangle equals 4*A007318 - 3*A000012 as infinite lower triangular matrices. - Emeric Deutsch, Jun 21 2007

Examples

			First few rows of the triangle are
  1;
  1,  1;
  1,  5,  1;
  1,  9,  9,  1;
  1, 13, 21, 13,  1;
  1, 17, 37, 37, 17,  1;
  1, 21, 57, 77, 57, 21, 1;
  ...
		

Crossrefs

Programs

  • Magma
    [4*Binomial(n, k) -3: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    T := proc (n, k) if k <= n then 4*binomial(n, k)-3 else 0 end if end proc; for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form - Emeric Deutsch, Jun 21 2007
  • Mathematica
    Table[4*Binomial[n, k] -3, {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    [[4*binomial(n, k) -3 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020

Formula

G.f.:(1 - z - t*z + 4*t*z^2)/((1-z)*(1-t*z)*(1-z-t*z)). - Emeric Deutsch, Jun 21 2007

Extensions

More terms from Emeric Deutsch, Jun 21 2007

A131065 Triangle read by rows: T(n,k) = 6*binomial(n,k) - 5 for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 13, 13, 1, 1, 19, 31, 19, 1, 1, 25, 55, 55, 25, 1, 1, 31, 85, 115, 85, 31, 1, 1, 37, 121, 205, 205, 121, 37, 1, 1, 43, 163, 331, 415, 331, 163, 43, 1, 1, 49, 211, 499, 751, 751, 499, 211, 49, 1, 1, 55, 265, 715, 1255, 1507, 1255, 715, 265, 55, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums = A131066.
The matrix inverse starts:
1;
-1, 1;
6, -7, 1;
-66, 78, -13, 1;
1086, -1284, 216, -19, 1;
-23826, 28170, -4740, 420, -25, 1;
653406, -772536, 129990, -11520, 690, -31, 1; - R. J. Mathar, Mar 12 2013

Examples

			First few rows of the triangle are:
  1;
  1,  1;
  1,  7,  1;
  1, 13, 13,  1;
  1, 19, 31, 19,  1;
  1, 25, 55, 55, 25, 1;
...
		

Crossrefs

Programs

  • Magma
    [6*Binomial(n,k) -5: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    T := proc (n, k) if k <= n then 6*binomial(n, k)-5 else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # Emeric Deutsch, Jun 20 2007
  • Mathematica
    Table[6*Binomial[n,k]-5,{n,0,15},{k,0,n}]//Flatten (* Harvey P. Dale, May 15 2016 *)
  • Sage
    [[6*binomial(n,k) -5 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020

Formula

G.f.: (1-z-t*z+6*t*z^2)/((1-z)*(1-t*z)*(1-z-t*z)). - Emeric Deutsch, Jun 20 2007

Extensions

More terms from Emeric Deutsch, Jun 20 2007

A131060 3*A007318 - 2*A000012 as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 16, 10, 1, 1, 13, 28, 28, 13, 1, 1, 16, 43, 58, 43, 16, 1, 1, 19, 61, 103, 103, 61, 19, 1, 1, 22, 82, 166, 208, 166, 82, 22, 1, 1, 25, 106, 250, 376, 376, 250, 106, 25, 1, 1, 28, 133, 358, 628, 754, 628, 358, 133, 28, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums = A097813: (1, 2, 6, 16, 38, 84, 178, ...).

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  4,  1;
  1,  7,  7,  1;
  1, 10, 16, 10,  1;
  1, 13, 28, 28, 13,  1;
  1, 16, 43, 58, 43, 16,  1;
  ...
		

Crossrefs

Programs

  • Magma
    [3*Binomial(n,k) -2: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    A131060:= (n,k) -> 3*binomial(n, k)-2; seq(seq(A131060(n, k), k = 0..n), n = 0.. 10); # G. C. Greubel, Mar 12 2020
  • Mathematica
    T[n_, k_] = 3*Binomial[n, k] -2; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* Roger L. Bagula, Aug 20 2008 *)
  • Sage
    [[3*binomial(n,k) -2 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020

Formula

T(n,k) = 3*binomial(n,k) - 2. - Roger L. Bagula, Aug 20 2008

Extensions

More terms from Roger L. Bagula, Aug 20 2008

A131063 Triangle read by rows: T(n,k) = 5*binomial(n,k) - 4 for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 11, 11, 1, 1, 16, 26, 16, 1, 1, 21, 46, 46, 21, 1, 1, 26, 71, 96, 71, 26, 1, 1, 31, 101, 171, 171, 101, 31, 1, 1, 36, 136, 276, 346, 276, 136, 36, 1, 1, 41, 176, 416, 626, 626, 416, 176, 41, 1, 1, 46, 221, 596, 1046, 1256, 1046, 596, 221, 46, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums = A131064: (1, 2, 8, 24, 60, 136, 292, ...), the binomial transform of (1, 1, 5, 5, 5, ...).

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  6,  1;
  1, 11, 11,  1;
  1, 16, 26, 16,  1;
  1, 21, 46, 46, 21,  1;
  1, 26, 71, 96, 71, 26,  1;
  ...
		

Crossrefs

Programs

  • GAP
    Print(Flat(List([0..10],n->List([0..n],k->5*Binomial(n,k)-4)))); # Muniru A Asiru, Feb 21 2019
    
  • Magma
    [5*Binomial(n, k) -4: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    T := proc (n, k) if k <= n then 5*binomial(n, k)-4 else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # Emeric Deutsch, Jun 20 2007
  • Mathematica
    Table[5*Binomial[n,k] -4, {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 12 2020 *)
  • Sage
    [[5*binomial(n, k) -4 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020

Formula

G.f.: (1-z-t*z+5*t*z^2)/((1-z)*(1-t*z)*(1-z-t*z)). - Emeric Deutsch, Jun 20 2007

Extensions

More terms from Emeric Deutsch, Jun 20 2007
Showing 1-10 of 22 results. Next