cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: XU Pingya

XU Pingya's wiki page.

XU Pingya has authored 89 sequences. Here are the ten most recent ones:

A356717 a(n) is the integer w such that (c(n)^2, -d(n)^2, w) is a primitive solution to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 11^3, where c(n) = F(n+2) + (-1)^n * F(n-3), d(n) = F(n+3) + (-1)^n * F(n-2) and F(n) is the n-th Fibonacci number (A000045).

Original entry on oeis.org

1, 29, 59, 241, 445, 1691, 3089, 11629, 21211, 79745, 145421, 546619, 996769, 3746621, 6831995, 25679761, 46827229, 176011739, 320958641, 1206402445, 2199883291, 8268805409, 15078224429, 56675235451, 103347687745, 388457842781, 708355589819, 2662529664049
Offset: 1

Author

XU Pingya, Aug 24 2022

Keywords

Examples

			For n=3, 2 * ((F(5) - F(0))^2)^3 + 2 * (-(F(6) - F(1))^2)^3 + 59^3 = 2 * 25^3 - 2 * 49^3 + 59^3 = 1331, a(3) = 59.
		

Crossrefs

Programs

  • Mathematica
    Table[(1331-2*((Fibonacci[n+2]+(-1)^n*Fibonacci[n-3]))^6+2*(Fibonacci[n+3]+(-1)^n*Fibonacci[n-2])^6)^(1/3), {n,28}]

Formula

a(n) = (1331 - 2 * A237132(n)^6 + 2 * A228208(n+1)^6)^(1/3).
a(n) = ((1-(-1)^n)/2) * (-5 + 14 * Sum_{k=1..n-1} Fibonacci(4*k-1) + 6 * Sum_{k=0..n-1} Fibonacci(4*k+1)) + ((1+(-1)^n)/2) * (-5 + 14 * Sum_{k=1..n} Fibonacci(4*k-1) + 6 * Sum_{k=0..n-1} Fibonacci(4*k+1)).
a(n) = ((1-(-1)^n)/2) * (-5 + 14 * A081018(n-1) + 6 * A081016(n-1)) + ((1+(-1)^n)/2) * (-5 + 14 * A081018(n) + 6 * A081016(n-1)).
From Stefano Spezia, Aug 25 2022: (Start)
G.f.: x*(1 + 28*x + 23*x^2 - 14*x^3 - 5*x^4)/((1 - x)*(1 - 3*x + x^2)*(1 + 3*x + x^2)).
a(n) = a(n-1) + 7*a(n-2) - 7*a(n-3) - a(n-4) + a(n-5) for n > 5. (End)

A356716 a(n) is the integer w such that (c(n)^2, -d(n)^2, -w) is a primitive solution to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 11^3, where c(n) = F(n+2) + (-1)^n * F(n-3), d(n) = F(n+1) + (-1)^n * F(n-4) and F(n) is the n-th Fibonacci number (A000045).

Original entry on oeis.org

5, 19, 31, 101, 179, 655, 1189, 4451, 8111, 30469, 55555, 208799, 380741, 1431091, 2609599, 9808805, 17886419, 67230511, 122595301, 460804739, 840280655, 3158402629, 5759369251, 21648013631, 39475304069, 148377692755, 270567759199, 1016995835621, 1854499010291
Offset: 1

Author

XU Pingya, Aug 24 2022

Keywords

Comments

Conjecture:
(i) For all k > 2, 2*x^3 + 2*y^3 + z^3 = A089270(k)^3 have primitive solutions form (c(n)^2, -d(n)^2, -w(n)) with d(n) = 3*d(n-2) - d(n-4), c(n) = d(n+2) - d(n) and w(n) = 8*w(n-2) - 8*w(n-4) + w(n-6).
(ii) This sequence is a subsequence of A089270.
From XU Pingya, Jun 07 2024: (Start)
Several positive examples of conjecture:
When A089270(4,5,6,7) = {19,29,31,41}, d(n) can be taken as:
(1/2) * (F(n+3) + (-1)^n * F(n-6));
((1-(-1)^n)/2) * (F(n+3) + F(n-4)) + ((1+(-1)^n)/2) * (F(n+3) - F(n-4));
((1-(-1)^n)/2) * (2*F(n-1) + 3*F(n-3)) + ((1+(-1)^n)/2) * (3*F(n-2) + 2*F(n-4));
and
((1-(-1)^n)/2) * (2*F(n+1) + F(n-5)) + ((1+(-1)^n)/2) * (F(n+2) + 2*F(n-4)).
When A089270(17) = 121, d(n) can be taken as d(1,2,3,4) = {-3,0,7,11}. (End)
From XU Pingya, Jul 17 2024: (Start)
Furthermore, we observe that if (x, y) (y < x/2) is the solution of the Diophantine equation x^2 + x * y - y^2 = A089270(k). Let
d(2*n-1) = x * F(2*n-2) - y * F(2*n-3), c(2*n-1) = d(2*n+1) - d(2*n-1);
d(2*n) = x * F(2*n-2) + y * F(2*n-1), c(2*n) = d(2*n+2) - d(2*n).
Then such c(n) and d(n) satisfy the conjecture. (End)

Examples

			For n=3, 2 * ((F(5) - F(0))^2)^3 + 2 * (-(F(4) - F(-1))^2)^3 + (-31)^3 = 2 * 25^3 - 2 * 4^3 - 31^3 = 1331, a(3) = 31.
		

Crossrefs

Programs

  • Mathematica
    Table[(-1331+2*((Fibonacci[n+2]+(-1)^n*Fibonacci[n-3]))^6-2*(Fibonacci[n+1]+(-1)^n*Fibonacci[n-4])^6)^(1/3), {n,28}]

Formula

a(n) = (-1331 + 2 * A237132(n)^6 - 2 * A228208(n-1)^6)^(1/3).
a(n) = ((1-(-1)^n)/2) * (-1 + 6 * Sum_{k=0..n-1} Fibonacci(4*k-1) + 14 * Sum_{k=0..n-2} Fibonacci(4*k+1)) + ((1+(-1)^n)/2) * (-1 + 6 * Sum_{k=0..n-1} Fibonacci(4*k-1) + 14 * Sum_{k=0..n-1} Fibonacci(4*k+1)).
a(n) = ((1-(-1)^n)/2) * (-1 + 6*A206351(n) + 14*A081016(n-2)) + ((1+(-1)^n)/2) * (-1 + 6*A206351(n) + 14*A081016(n-1)).
From Stefano Spezia, Aug 25 2022: (Start)
G.f.: x*(5 + 14*x - 23*x^2 - 28*x^3 - x^4)/((1 - x)*(1 - 3*x + x^2)*(1 + 3*x + x^2)).
a(n) = a(n-1) + 7*a(n-2) - 7*a(n-3) - a(n-4) + a(n-5) for n > 5. (End)
From XU Pingya, Jul 17 2024: (Start)
a(2*n-1) = (F(2*n) + F(2*n-2) + F(2*n-5))^2 + (F(2*n) + F(2*n-2) + F(2*n-5)) * (F(2*n-2) + F(2*n-4) + F(2*n-7)) - (F(2*n-2) + F(2*n-4) + F(2*n-7))^2;
a(2*n) = (F(2*n+2) + F(2*n-3))^2 + (F(2*n+2) + F(2*n-3)) * (F(2*n) + F(2*n-5)) - (F(2*n) + F(2*n-5))^2. (End)

A354337 a(n) is the integer w such that (L(2*n)^2, -L(2*n + 1)^2, w) is a primitive solution to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 125, where L(n) is the n-th Lucas number (A000032).

Original entry on oeis.org

19, 149, 1039, 7139, 48949, 335519, 2299699, 15762389, 108037039, 740496899, 5075441269, 34787591999, 238437702739, 1634276327189, 11201496587599, 76776199786019, 526231901914549, 3606847113615839, 24721697893396339, 169445038140158549, 1161393569087713519
Offset: 1

Author

XU Pingya, Jun 20 2022

Keywords

Comments

Subsequence of A017377.

Examples

			2*(L(4)^2)^3 + 2*(-L(5)^2)^3 + (149)^3 = 2*(49)^3 + 2*(-121)^3 + (149)^3 = 125, a(2) = 149.
		

Programs

  • Mathematica
    LinearRecurrence[{7,-1},{19,149},21]-1 + LucasL[2*Range[21]-3]^2

Formula

a(n) = (125 - 2*A005248(n)^6 + 2*A002878(n)^6)^(1/3).
a(n) = Lucas(4*n+2) + Lucas(4n-1) - 3 = 2*A056914(n)-3 = 15*A092521(n) + A288913(n-1).
a(n) = 2*A081017(n) - 1.
a(n) = 10*A089508(n) + 9.
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: x*(19 - 3*x - x^2)/((1 - x)*(1 - 7*x + x^2)). - Stefano Spezia, Jun 22 2022

A354336 a(n) is the integer w such that (L(2*n)^2, -L(2*n-1)^2, -w) is a primitive solution to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 125, where L(n) is the n-th Lucas number (A000032).

Original entry on oeis.org

1, 11, 61, 401, 2731, 18701, 128161, 878411, 6020701, 41266481, 282844651, 1938646061, 13287677761, 91075098251, 624238009981, 4278590971601, 29325898791211, 201002700566861, 1377693005176801, 9442848335670731, 64722245344518301, 443612869075957361
Offset: 0

Author

XU Pingya, Jun 20 2022

Keywords

Comments

Subsequence of A017281.

Examples

			2*(L(4)^2)^3 + 2*(-L(3)^2)^3 + (-61)^3 = 2*(49)^3 + 2*(-1)^3 + (-61)^3 = 125, a(2) = 61.
		

Programs

  • Mathematica
    LucasL[4*Range[22]-3] + 1 - LucasL[2*Range[22]-3]^2

Formula

a(n) = (-125 + 2*A005248(n)^6 - 2*A002878(n-1)^6)^(1/3).
a(n) = Lucas(4*n+1) - Lucas(4*n-2) + 3 = A056914(n) - 15*A092521(n-1), for n > 1.
a(n) = Lucas(4*n+1) + 1 - Lucas(2*n-1)^2.
a(n) = 2*A081015(n-1) + 1.
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: (1 + 3*x - 19*x^2)/((1 - x)*(1 - 7*x + x^2)). - Stefano Spezia, Jun 22 2022
a(n) = (F(2*n+1) + F(2*n-1))^2 + (F(2*n+1) + F(2*n-1)) * (F(2*n-1) + F(2*n-3)) - (F(2*n-1) + F(2*n-3))^2. - XU Pingya, Jul 17 2024

A338933 Numbers k such that the Diophantine equation x^3 + y^3 + 2*z^3 = k has nontrivial primitive parametric solutions.

Original entry on oeis.org

2, 16, 128, 1024, 1458, 8192, 11664, 31250, 65536, 93312, 235298, 524288, 746496, 1062882, 2000000, 3543122, 3906250, 5971968, 9653618, 15059072, 22781250, 28697814, 33554432, 47775744, 48275138, 68024448, 80707214, 94091762, 128000000, 171532242, 226759808
Offset: 1

Author

XU Pingya, Nov 16 2020

Keywords

Comments

The data are derived from the following formula:
(a^2 - a*t - t^2)^3 + (a^2 + a*t - t^2)^3 + 2*(t^2)^3 = 2*a^6
(a^3 - 3*t^3)^3 + (a^3 + 3*t^3) + 2*(-3*a*t^2)^3 = 2*a^9;
(9*a^3 - t^3)^3 + (9*a^3 + t^3)^3 + 2*(-3*a*t^2)^3 = 1458*a^9;
(6*a^3*t - 72*t^4)^3 + (72*t^4)^3 + 2*(a^4 - 36*a*t^3)^3 = 2*a^12;
(6*a^3*t - 9*t^4)^3 + (9*t^4)^3 + 2*(2*a^4 - 9*a*t^3)^3 = 16*a^12 = 2*2^3*a^12;
(18*a^3*t - 8*t^4)^3 + (8*t^4)^3 + 2*(9*a^4 - 12*a*t^3)^3 = 1458*a^12 = 2*9^3*a^12;
(18*a^3*t - t^4)^3 + (t^4)^3 + 2*(18*a^4 - 3*a*t^3)^3 = 11664*a^12 = 2*18^3*a^12.

Examples

			16 is a term, because when t is an integer, (6*(2*t + 1) - 9*(2*t + 1)^4, 9*(2*t + 1)^4, 2 - 9*(2*t + 1)^3) is a nontrivial primitive parametric solution of x^3 + y^3 + 2*z^3 = 16.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Programs

  • Mathematica
    t1 = 2*Range[23]^6;
    t2 = 2*{1, 2, 4, 5, 7, 8}^9;
    t3 = 1458*Range[4]^9;
    t4 = 2*{1, 5}^12;
    t5 = 16*{1, 2, 4}^12;
    t6 = 1458*{1, 3}^12;
    t7 = 11664*{1, 2, 3}^12;
    Take[Union[t1, t2, t3, t4, t5, t6, t7], 31]

Extensions

Missing terms 1024 and 746496 added by XU Pingya, Mar 14 2022

A338932 Numbers k such that the Diophantine equation x^3 + y^3 + z^3 = k has nontrivial primitive parametric solutions.

Original entry on oeis.org

1, 2, 128, 729, 1458, 4096, 65536, 93312, 2985984, 3906250, 16777216, 28697814, 33554432, 47775744, 80707214, 244140625, 250000000, 387420489, 1836660096, 2847656250, 4715895382, 5165261696, 12230590464, 13841287201, 17179869184, 21208998746, 24461180928
Offset: 1

Author

XU Pingya, Nov 16 2020

Keywords

Comments

The data are derived from the following formula:
(a^3 - 6*t^3)^3 + (a^3 + 6*t^3)^3 + (-6*a*t^2)^3 = 2*a^9;
(4*a^3 - 3*t^3)^3 + (4*a^3 + 3*t^3)^3 + (-6*a*t^2)^3 = 128*a^9 = 2*4^3*a^9;
(9*a^3 - 2*t^3)^3 + (9*a^3 + 2*t^3)^3 + (-6*a*t^2)^3 = 1458*a^9 = 2*9^3*a^9;
(36*a^3 - t^3)^3 + (36*a^3 + t^3)^3 + (-6*a*t^2)^3 = 93312*a^9 = 2*36^3*a^9;
((3*a^3)*t - 9*t^4)^3 + (9*t^4)^3 + (a^4 - 9*a*t^3)^3 = a^12;
((9*a^3)*t - t^4)^3 + (t^4)^3 + (9*a^4 - 3*a*t^3)^3 = 729*a^12 = 9^3*a^12.

Examples

			128 is a term, because (4 - 3*(2*n - 1)^3, 4 + 3*(2*n - 1)^3, -3*(2*n - 1)^2) is a nontrivial primitive parametric solution of x^3 + y^3 + z^3 = 128.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Programs

  • Mathematica
    t1 = 2*{1, 5, 7, 11, 13}^9;
    t2 = 128*{1, 2, 4, 5, 7, 8}^9;
    t3 = 1458*{1, 3, 5, 7, 9}^9;
    t4 = 93312*{1, 2, 3, 4, 5}^9;
    t5 = {1, 2, 4, 5, 7}^12;
    t6 = 729*{1, 2, 3, 4, 5}^12;
    Take[Union[t1, t2, t3, t4, t5, t6], 27]

A338239 Values z of primitive solutions (x, y, z) to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 1.

Original entry on oeis.org

-1, 1, -5, 11, -17, 19, 29, -31, -37, -61, 79, -85, 113, -127, -143, 145, -209, 305, 361, -485, 487, 545, 647, 667, 811, -1091, -1151, 1153, -1235, -1429, -1525, 1597, 1699, -1793, -2249, 2251, -2533, 2627, -2677, 2977, -2981, 3089, -3295, 3739, -3887, 3889
Offset: 1

Author

XU Pingya, Oct 18 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
When x = (3*c)*t - (9*a)*t^4, y = (9*a)*t^4, z = c - (9*a)*t^3; a*x^3 + a*y^3 + c*z^3 = c^4. Let a = 2, c = 1, then 1 - 18*n^3 and 1 + 18*n^3 are terms of the sequence. Also, -A337928 and A337929 are subsequences.

Examples

			2*25^3 + 2*(-64)^3 + 79^3 = 2*164^3 + 2*(-167)^3 + 79^3 = 1, 79 is a term.
		

Programs

  • Mathematica
    Clear[t]
    t = {};
    Do[y = ((1 - 2x^3 - z^3)/2)^(1/3) /. (-1)^(1/3) -> -1;
     If[IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -4000, 4000}, {x, -Round[(Abs[1 + z^3]/6)^(1/2)], Round[(Abs[1 + z^3]/6)^(1/2)]}]
    u = Union@t;
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 8001}];
    Select[v, MemberQ[u, #] &]

A337929 Numbers w such that (F(2*n-1)^2, -F(2*n)^2, w) are primitive solutions of the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 1, where F(n) is the n-th Fibonacci number (A000045).

Original entry on oeis.org

1, 11, 79, 545, 3739, 25631, 175681, 1204139, 8253295, 56568929, 387729211, 2657535551, 18215019649, 124847601995, 855718194319, 5865179758241, 40200540113371, 275538601035359, 1888569667134145, 12944449068903659, 88722573815191471, 608113567637436641
Offset: 1

Author

XU Pingya, Sep 30 2020

Keywords

Examples

			2*(F(3)^2)^3 + 2*(-F(4)^2)^3 + 11^3 = 2*4^3 + 2*(-9)^3 + 11^3 = 1, 11 is a term.
		

Crossrefs

Programs

  • Mathematica
    Table[(2*Fibonacci[2n]^6 - 2*Fibonacci[2n-1]^6 + 1)^(1/3), {n, 22}]
    LinearRecurrence[{8,-8,1},{1,11,79},30] (* Harvey P. Dale, Aug 23 2021 *)

Formula

a(n) = (2*F(2*n)^6 - 2*F(2*n-1)^6 + 1)^(1/3).
From Colin Barker, Oct 01 2020: (Start)
G.f.: x*(1 + 3*x - x^2) / ((1 - x)*(1 - 7*x + x^2)).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) for n>3.
(End)
a(n) = 2*A003482(n) + 1. - Hugo Pfoertner, Oct 01 2020
a(n) = A033888(n) - A064170(n+2). - Flávio V. Fernandes, Jan 10 2021

A337928 Numbers w such that (F(2n+1)^2, -F(2n)^2, -w) are primitive solutions of the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 1, where F(n) is the n-th Fibonacci number (A000045).

Original entry on oeis.org

1, 5, 31, 209, 1429, 9791, 67105, 459941, 3152479, 21607409, 148099381, 1015088255, 6957518401, 47687540549, 326855265439, 2240299317521, 15355239957205, 105246380382911, 721369422723169, 4944339578679269, 33889007628031711, 232278713817542705
Offset: 0

Author

XU Pingya, Sep 30 2020

Keywords

Examples

			2*(F(5)^2)^3 + 2*(-F(4)^2)^3 + (-31)^3 = 2*(25)^3 + 2*(-9)^3 + (-31)^3 = 1, a(2) = 31.
		

Crossrefs

Programs

  • Mathematica
    Table[(2*Fibonacci[2n+1]^6 - 2*Fibonacci[2n]^6 - 1)^(1/3), {n, 0, 21}]
    Table[(Fibonacci[2n+1]*Fibonacci[2n+2]- Fibonacci[2n]^2), {n, 0, 21}] (* Wolfgang Berndt, May 26 2023 *)
    LinearRecurrence[{8,-8,1},{1,5,31},30] (* Harvey P. Dale, Dec 17 2023 *)
  • PARI
    Vec((1 - 3*x - x^2) / ((1 - x)*(1 - 7*x + x^2)) + O(x^20)) \\ Colin Barker, Oct 01 2020

Formula

a(n) = (2*F(2*n+1)^6 - 2*F(2*n)^6 - 1)^(1/3).
From Colin Barker, Oct 01 2020: (Start)
G.f.: (1 - 3*x - x^2) / ((1 - x)*(1 - 7*x + x^2)).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) for n>2.
(End)
a(n) = 2*A081018(n) + 1. - Hugo Pfoertner, Oct 01 2020
a(n) = A064170(n+2) + A033888(n). - Flávio V. Fernandes, Jan 10 2021
a(n) = F(2*n+1)*F(2*n+2) - F(2*n)^2. - Wolfgang Berndt, May 26 2023
a(2*n-1) = 5 + 6*Sum_{k=1..n-1} F(8*k+1), a(2*n) = 1 + 6*Sum_{k=1..n} F(8*k-3). - XU Pingya, Jun 09 2024

A336451 Primes of form x^3 - (x + 1)^3 + 3*z^3 or -x^3 + (x + 1)^3 - 3*z^3, with x,z >= 0.

Original entry on oeis.org

2, 5, 7, 13, 17, 19, 23, 29, 31, 37, 53, 59, 61, 67, 73, 79, 101, 103, 107, 113, 127, 131, 139, 149, 173, 179, 181, 191, 193, 199, 251, 263, 269, 271, 277, 307, 317, 331, 367, 373, 379, 383, 389, 397, 431, 439, 479, 503, 509, 521, 523, 547, 557, 563, 569, 571
Offset: 1

Author

XU Pingya, Aug 31 2020

Keywords

Comments

For z <= 10^6, no other prime have this form in the first 105 primes.

Examples

			0^3 - 1^3 + 3*2^3 = 23, 23 is a term.
-3^3 + 4^3 - 3*0^3 = -4^3 + 5^3 - 3*2^3 = -52^3 + 53^3 - 3*14^3 = 37, 37 is a term.
		

Crossrefs

Programs

  • Mathematica
    p1 = Select[Prime[Range[105]], IntegerQ[(# - 1)/3] &];
    p2 = Select[Prime[Range[105]], IntegerQ[(# + 1)/3] &];
    n1 = Length@p1; n2 = Length@p2;
    r1 = (p1 - 1)/3; r2 = (p2 + 1)/3;
    t = {};
    Do[x = (z^3 + r1[[n]] + 1/4)^(1/2) - 1/2;
     If[IntegerQ[x], AppendTo[t, -x^3 + (x + 1)^3 - 3z^3]], {n, 1,
      n1}, {z, 0, 270}]
    Do[x = (z^3 - r2[[n]] + 1/4)^(1/2) - 1/2;
     If[IntegerQ[x], AppendTo[t, x^3 - (x + 1)^3 + 3z^3]], {n, 1,
      n2}, {z, 0, 170}]
    Union@t