A356717 a(n) is the integer w such that (c(n)^2, -d(n)^2, w) is a primitive solution to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 11^3, where c(n) = F(n+2) + (-1)^n * F(n-3), d(n) = F(n+3) + (-1)^n * F(n-2) and F(n) is the n-th Fibonacci number (A000045).
1, 29, 59, 241, 445, 1691, 3089, 11629, 21211, 79745, 145421, 546619, 996769, 3746621, 6831995, 25679761, 46827229, 176011739, 320958641, 1206402445, 2199883291, 8268805409, 15078224429, 56675235451, 103347687745, 388457842781, 708355589819, 2662529664049
Offset: 1
Examples
For n=3, 2 * ((F(5) - F(0))^2)^3 + 2 * (-(F(6) - F(1))^2)^3 + 59^3 = 2 * 25^3 - 2 * 49^3 + 59^3 = 1331, a(3) = 59.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,7,-7,-1,1).
Crossrefs
Programs
-
Mathematica
Table[(1331-2*((Fibonacci[n+2]+(-1)^n*Fibonacci[n-3]))^6+2*(Fibonacci[n+3]+(-1)^n*Fibonacci[n-2])^6)^(1/3), {n,28}]
Formula
a(n) = ((1-(-1)^n)/2) * (-5 + 14 * Sum_{k=1..n-1} Fibonacci(4*k-1) + 6 * Sum_{k=0..n-1} Fibonacci(4*k+1)) + ((1+(-1)^n)/2) * (-5 + 14 * Sum_{k=1..n} Fibonacci(4*k-1) + 6 * Sum_{k=0..n-1} Fibonacci(4*k+1)).
a(n) = ((1-(-1)^n)/2) * (-5 + 14 * A081018(n-1) + 6 * A081016(n-1)) + ((1+(-1)^n)/2) * (-5 + 14 * A081018(n) + 6 * A081016(n-1)).
From Stefano Spezia, Aug 25 2022: (Start)
G.f.: x*(1 + 28*x + 23*x^2 - 14*x^3 - 5*x^4)/((1 - x)*(1 - 3*x + x^2)*(1 + 3*x + x^2)).
a(n) = a(n-1) + 7*a(n-2) - 7*a(n-3) - a(n-4) + a(n-5) for n > 5. (End)