A356716 a(n) is the integer w such that (c(n)^2, -d(n)^2, -w) is a primitive solution to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 11^3, where c(n) = F(n+2) + (-1)^n * F(n-3), d(n) = F(n+1) + (-1)^n * F(n-4) and F(n) is the n-th Fibonacci number (A000045).
5, 19, 31, 101, 179, 655, 1189, 4451, 8111, 30469, 55555, 208799, 380741, 1431091, 2609599, 9808805, 17886419, 67230511, 122595301, 460804739, 840280655, 3158402629, 5759369251, 21648013631, 39475304069, 148377692755, 270567759199, 1016995835621, 1854499010291
Offset: 1
Examples
For n=3, 2 * ((F(5) - F(0))^2)^3 + 2 * (-(F(4) - F(-1))^2)^3 + (-31)^3 = 2 * 25^3 - 2 * 4^3 - 31^3 = 1331, a(3) = 31.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,7,-7,-1,1).
Crossrefs
Programs
-
Mathematica
Table[(-1331+2*((Fibonacci[n+2]+(-1)^n*Fibonacci[n-3]))^6-2*(Fibonacci[n+1]+(-1)^n*Fibonacci[n-4])^6)^(1/3), {n,28}]
Formula
a(n) = ((1-(-1)^n)/2) * (-1 + 6 * Sum_{k=0..n-1} Fibonacci(4*k-1) + 14 * Sum_{k=0..n-2} Fibonacci(4*k+1)) + ((1+(-1)^n)/2) * (-1 + 6 * Sum_{k=0..n-1} Fibonacci(4*k-1) + 14 * Sum_{k=0..n-1} Fibonacci(4*k+1)).
a(n) = ((1-(-1)^n)/2) * (-1 + 6*A206351(n) + 14*A081016(n-2)) + ((1+(-1)^n)/2) * (-1 + 6*A206351(n) + 14*A081016(n-1)).
From Stefano Spezia, Aug 25 2022: (Start)
G.f.: x*(5 + 14*x - 23*x^2 - 28*x^3 - x^4)/((1 - x)*(1 - 3*x + x^2)*(1 + 3*x + x^2)).
a(n) = a(n-1) + 7*a(n-2) - 7*a(n-3) - a(n-4) + a(n-5) for n > 5. (End)
From XU Pingya, Jul 17 2024: (Start)
a(2*n-1) = (F(2*n) + F(2*n-2) + F(2*n-5))^2 + (F(2*n) + F(2*n-2) + F(2*n-5)) * (F(2*n-2) + F(2*n-4) + F(2*n-7)) - (F(2*n-2) + F(2*n-4) + F(2*n-7))^2;
a(2*n) = (F(2*n+2) + F(2*n-3))^2 + (F(2*n+2) + F(2*n-3)) * (F(2*n) + F(2*n-5)) - (F(2*n) + F(2*n-5))^2. (End)
Comments