cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A033888 a(n) = Fibonacci(4*n).

Original entry on oeis.org

0, 3, 21, 144, 987, 6765, 46368, 317811, 2178309, 14930352, 102334155, 701408733, 4807526976, 32951280099, 225851433717, 1548008755920, 10610209857723, 72723460248141, 498454011879264, 3416454622906707, 23416728348467685, 160500643816367088, 1100087778366101931, 7540113804746346429
Offset: 0

Views

Author

Keywords

Comments

(x,y)=(a(n),a(n+1)) are solutions of (x+y)^2/(1+xy)=9, the other solutions are in A033890. - Floor van Lamoen, Dec 10 2001
Sequence A033888 provides half of the solutions to the equation 5*x^2 + 4 is a square. The other half are found in A033890. Lim_{n->infinity} a(n)/a(n-1) = phi^4 = (7+3*sqrt(5))/2. - Gregory V. Richardson, Oct 13 2002
Fibonacci numbers divisible by 3. - Reinhard Zumkeller, Aug 20 2011

Examples

			G.f. = 3*x + 21*x^2 + 144*x^3 + 987*x^4 + 6765*x^5 + 46368*x^6 + ...
		

Crossrefs

Fourth column of array A102310.

Programs

Formula

a(n) = 7*a(n-1) - a(n-2).
a(n) = ((7+3*sqrt(5))^(n-1) - (7-3*sqrt(5))^(n-1)) / ((2^(n-1))*sqrt(5)). - Gregory V. Richardson, Oct 13 2002
a(n) = Sum_{k=0..n} F(3*n-k)*binomial(n, k). - Benoit Cloitre, Jun 07 2004
a(n) = Lucas(2*n) * Lucas(n) * Fibonacci(n). - Ralf Stephan, Sep 25 2004
G.f.: 3*x/(1-7*x+x^2). - Philippe Deléham, Nov 17 2008
a(n) = 3*A004187(n). - R. J. Mathar, Sep 03 2010
a(n) = Fibonacci[(4*n + 2)] modulo Fibonacci[(4*n + 1)]. - Artur Jasinski, Nov 15 2011 (corrected by Iain Fox, Dec 18 2017)
a(n) = (A337929(n) + A337928(n)) / 2. - Flávio V. Fernandes, Feb 06 2021
E.g.f.: 2*exp(7*x/2)*sinh(3*sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, Feb 07 2021
a(n) = Sum_{k>=0} Fibonacci(2*n*k)/Lucas(2*n)^k (Filipponi and Bucci, 1994). - Amiram Eldar, Jan 17 2022
From Peter Bala, May 22 2025: (Start)
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/3 (telescoping series: 3/(a(n) - 1/a(n)) = 1/A033890(n) + 1/A033890(n-1)).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(5) (telescoping product: ((a(n) + 1)/(a(n) - 1))^2 = (5 - 4/Fibonacci(2*n+1)^2)/(5 - 4/Fibonacci(2*n-1)^2) from which we get Product_{k = 1..n} ((a(k) + 1)/(a(k) - 1))^2 = 5 - 4/Fibonacci(2*n+1)^2). (End)

A337928 Numbers w such that (F(2n+1)^2, -F(2n)^2, -w) are primitive solutions of the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 1, where F(n) is the n-th Fibonacci number (A000045).

Original entry on oeis.org

1, 5, 31, 209, 1429, 9791, 67105, 459941, 3152479, 21607409, 148099381, 1015088255, 6957518401, 47687540549, 326855265439, 2240299317521, 15355239957205, 105246380382911, 721369422723169, 4944339578679269, 33889007628031711, 232278713817542705
Offset: 0

Views

Author

XU Pingya, Sep 30 2020

Keywords

Examples

			2*(F(5)^2)^3 + 2*(-F(4)^2)^3 + (-31)^3 = 2*(25)^3 + 2*(-9)^3 + (-31)^3 = 1, a(2) = 31.
		

Crossrefs

Programs

  • Mathematica
    Table[(2*Fibonacci[2n+1]^6 - 2*Fibonacci[2n]^6 - 1)^(1/3), {n, 0, 21}]
    Table[(Fibonacci[2n+1]*Fibonacci[2n+2]- Fibonacci[2n]^2), {n, 0, 21}] (* Wolfgang Berndt, May 26 2023 *)
    LinearRecurrence[{8,-8,1},{1,5,31},30] (* Harvey P. Dale, Dec 17 2023 *)
  • PARI
    Vec((1 - 3*x - x^2) / ((1 - x)*(1 - 7*x + x^2)) + O(x^20)) \\ Colin Barker, Oct 01 2020

Formula

a(n) = (2*F(2*n+1)^6 - 2*F(2*n)^6 - 1)^(1/3).
From Colin Barker, Oct 01 2020: (Start)
G.f.: (1 - 3*x - x^2) / ((1 - x)*(1 - 7*x + x^2)).
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3) for n>2.
(End)
a(n) = 2*A081018(n) + 1. - Hugo Pfoertner, Oct 01 2020
a(n) = A064170(n+2) + A033888(n). - Flávio V. Fernandes, Jan 10 2021
a(n) = F(2*n+1)*F(2*n+2) - F(2*n)^2. - Wolfgang Berndt, May 26 2023
a(2*n-1) = 5 + 6*Sum_{k=1..n-1} F(8*k+1), a(2*n) = 1 + 6*Sum_{k=1..n} F(8*k-3). - XU Pingya, Jun 09 2024

A262342 Area of Lewis Carroll's paradoxical F(2n+1) X F(2n+3) rectangle.

Original entry on oeis.org

10, 65, 442, 3026, 20737, 142130, 974170, 6677057, 45765226, 313679522, 2149991425, 14736260450, 101003831722, 692290561601, 4745030099482, 32522920134770, 222915410843905, 1527884955772562, 10472279279564026, 71778070001175617, 491974210728665290, 3372041405099481410
Offset: 1

Views

Author

Jonathan Sondow, Oct 16 2015

Keywords

Comments

Warren Weaver (1938): "In a familiar geometrical paradox a square of area 8 X 8 = 64 square units is cut into four parts which may be refitted to form a rectangle of apparent area 5 X 13 = 65 square units.... Lewis Carroll generalized this paradox...."
Carroll cuts a F(2n+2) X F(2n+2) square into four parts, where F(n) is the n-th Fibonacci number. Two parts are right triangles with legs F(2n) and F(2n+2); two are right trapezoids three of whose sides are F(2n), F(2n+1), and F(2n+1). (Thus n > 0.) The paradox (or dissection fallacy) depends on Cassini's identity F(2n+1) * F(2n+3) = F(2n+2)^2 + 1.
For an extension of the paradox to a F(2n+1) X F(2n+1) square using Cassini's identity F(2n) * F(2n+2) = F(2n+1)^2 - 1, see Dudeney (1970), Gardner (1956), Horadam (1962), Knott (2014), Kumar (1964), and Sillke (2004). Sillke also has many additional references and links.

Examples

			F(3) * F(5) = 2 * 5 = 10 = 3^2 + 1 = F(4)^2 + 1, so a(1) = 10.
G.f. = 10*x + 65*x^2 + 442*x^3 + 3026*x^4 + 20737*x^5 + 142130*x^6 + 974170*x^7 + ...
		

References

  • W. W. Rouse Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th edition, Dover, 1987, p. 85.
  • Henry E. Dudeney, 536 Puzzles and Curious Problems, Scribner, reprinted 1970, Problems 352-353 and their answers.
  • Martin Gardner, Mathematics, Magic and Mystery, Dover, 1956, Chap. 8.
  • Edward Wakeling, Rediscovered Lewis Carroll Puzzles, Dover, 1995, p. 12.
  • David Wells, The Penguin Book of Curious and Interesting Puzzles, Penguin, 1997, Puzzle 143.

Crossrefs

Programs

  • Magma
    [Fibonacci(2*n+1)*Fibonacci(2*n+3) : n in [1..30]]; // Wesley Ivan Hurt, Oct 16 2015
    
  • Maple
    with(combinat): A262342:=n->fibonacci(2*n+1)*fibonacci(2*n+3): seq(A262342(n), n=1..30); # Wesley Ivan Hurt, Oct 16 2015
  • Mathematica
    Table[Fibonacci[2 n + 1] Fibonacci[2 n + 3], {n, 22}]
    LinearRecurrence[{8,-8,1},{10,65,442},30] (* Harvey P. Dale, Aug 06 2024 *)
  • PARI
    Vec(-x*(2*x^2-15*x+10)/((x-1)*(x^2-7*x+1)) + O(x^30)) \\ Colin Barker, Oct 17 2015
    
  • PARI
    a(n) = fibonacci(2*n+1) * fibonacci(2*n+3) \\ Altug Alkan, Oct 17 2015

Formula

a(n) = Fibonacci(2n+1) * Fibonacci(2n+3) = Fibonacci(2n+2)^2 + 1 for n > 0.
From Colin Barker, Oct 17 2015: (Start)
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: -x*(2*x^2-15*x+10) / ((x-1)*(x^2-7*x+1)).
(End)
a(3*k-2) mod 2 = 0; a(3*k-1) mod 2 = 1; a(3*k) mod 2 = 0, k > 0. - Altug Alkan, Oct 17 2015
a(n) = A059929(2*n+1) = A070550(4*n+1) = A166516(2*n+2) = A190018(8*n) = A236165(4*n+4) = A245306(2*n+2). - Bruno Berselli, Oct 17 2015
a(n) = A064170(n+3). - Alois P. Heinz, Oct 17 2015
E.g.f.: (1/5)*((1/phi*r)*exp(b*x) + (phi^4/r)*exp(a*x) + 3*exp(x) - 10), where r = 2*phi+1, 2*a=7+3*sqrt(5), 2*b=7-3*sqrt(5). - G. C. Greubel, Oct 17 2015
a(n) = (A337928(n+1) - A337929(n+1)) / 2. - Flávio V. Fernandes, Feb 06 2021
Sum_{n>=1} 1/a(n) = sqrt(5)/2 - 1 = A176055 - 2. - Amiram Eldar, Mar 04 2021

A354337 a(n) is the integer w such that (L(2*n)^2, -L(2*n + 1)^2, w) is a primitive solution to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 125, where L(n) is the n-th Lucas number (A000032).

Original entry on oeis.org

19, 149, 1039, 7139, 48949, 335519, 2299699, 15762389, 108037039, 740496899, 5075441269, 34787591999, 238437702739, 1634276327189, 11201496587599, 76776199786019, 526231901914549, 3606847113615839, 24721697893396339, 169445038140158549, 1161393569087713519
Offset: 1

Views

Author

XU Pingya, Jun 20 2022

Keywords

Comments

Subsequence of A017377.

Examples

			2*(L(4)^2)^3 + 2*(-L(5)^2)^3 + (149)^3 = 2*(49)^3 + 2*(-121)^3 + (149)^3 = 125, a(2) = 149.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-1},{19,149},21]-1 + LucasL[2*Range[21]-3]^2

Formula

a(n) = (125 - 2*A005248(n)^6 + 2*A002878(n)^6)^(1/3).
a(n) = Lucas(4*n+2) + Lucas(4n-1) - 3 = 2*A056914(n)-3 = 15*A092521(n) + A288913(n-1).
a(n) = 2*A081017(n) - 1.
a(n) = 10*A089508(n) + 9.
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: x*(19 - 3*x - x^2)/((1 - x)*(1 - 7*x + x^2)). - Stefano Spezia, Jun 22 2022

A356717 a(n) is the integer w such that (c(n)^2, -d(n)^2, w) is a primitive solution to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 11^3, where c(n) = F(n+2) + (-1)^n * F(n-3), d(n) = F(n+3) + (-1)^n * F(n-2) and F(n) is the n-th Fibonacci number (A000045).

Original entry on oeis.org

1, 29, 59, 241, 445, 1691, 3089, 11629, 21211, 79745, 145421, 546619, 996769, 3746621, 6831995, 25679761, 46827229, 176011739, 320958641, 1206402445, 2199883291, 8268805409, 15078224429, 56675235451, 103347687745, 388457842781, 708355589819, 2662529664049
Offset: 1

Views

Author

XU Pingya, Aug 24 2022

Keywords

Examples

			For n=3, 2 * ((F(5) - F(0))^2)^3 + 2 * (-(F(6) - F(1))^2)^3 + 59^3 = 2 * 25^3 - 2 * 49^3 + 59^3 = 1331, a(3) = 59.
		

Crossrefs

Programs

  • Mathematica
    Table[(1331-2*((Fibonacci[n+2]+(-1)^n*Fibonacci[n-3]))^6+2*(Fibonacci[n+3]+(-1)^n*Fibonacci[n-2])^6)^(1/3), {n,28}]

Formula

a(n) = (1331 - 2 * A237132(n)^6 + 2 * A228208(n+1)^6)^(1/3).
a(n) = ((1-(-1)^n)/2) * (-5 + 14 * Sum_{k=1..n-1} Fibonacci(4*k-1) + 6 * Sum_{k=0..n-1} Fibonacci(4*k+1)) + ((1+(-1)^n)/2) * (-5 + 14 * Sum_{k=1..n} Fibonacci(4*k-1) + 6 * Sum_{k=0..n-1} Fibonacci(4*k+1)).
a(n) = ((1-(-1)^n)/2) * (-5 + 14 * A081018(n-1) + 6 * A081016(n-1)) + ((1+(-1)^n)/2) * (-5 + 14 * A081018(n) + 6 * A081016(n-1)).
From Stefano Spezia, Aug 25 2022: (Start)
G.f.: x*(1 + 28*x + 23*x^2 - 14*x^3 - 5*x^4)/((1 - x)*(1 - 3*x + x^2)*(1 + 3*x + x^2)).
a(n) = a(n-1) + 7*a(n-2) - 7*a(n-3) - a(n-4) + a(n-5) for n > 5. (End)

A338239 Values z of primitive solutions (x, y, z) to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 1.

Original entry on oeis.org

-1, 1, -5, 11, -17, 19, 29, -31, -37, -61, 79, -85, 113, -127, -143, 145, -209, 305, 361, -485, 487, 545, 647, 667, 811, -1091, -1151, 1153, -1235, -1429, -1525, 1597, 1699, -1793, -2249, 2251, -2533, 2627, -2677, 2977, -2981, 3089, -3295, 3739, -3887, 3889
Offset: 1

Views

Author

XU Pingya, Oct 18 2020

Keywords

Comments

Terms are arranged in order of increasing absolute value (if equal, the negative number comes first).
When x = (3*c)*t - (9*a)*t^4, y = (9*a)*t^4, z = c - (9*a)*t^3; a*x^3 + a*y^3 + c*z^3 = c^4. Let a = 2, c = 1, then 1 - 18*n^3 and 1 + 18*n^3 are terms of the sequence. Also, -A337928 and A337929 are subsequences.

Examples

			2*25^3 + 2*(-64)^3 + 79^3 = 2*164^3 + 2*(-167)^3 + 79^3 = 1, 79 is a term.
		

Crossrefs

Programs

  • Mathematica
    Clear[t]
    t = {};
    Do[y = ((1 - 2x^3 - z^3)/2)^(1/3) /. (-1)^(1/3) -> -1;
     If[IntegerQ[y] && GCD[x, y, z] == 1, AppendTo[t, z]], {z, -4000, 4000}, {x, -Round[(Abs[1 + z^3]/6)^(1/2)], Round[(Abs[1 + z^3]/6)^(1/2)]}]
    u = Union@t;
    v = Table[(-1)^n*Floor[(n + 1)/2], {n, 0, 8001}];
    Select[v, MemberQ[u, #] &]
Showing 1-6 of 6 results.