cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A338932 Numbers k such that the Diophantine equation x^3 + y^3 + z^3 = k has nontrivial primitive parametric solutions.

Original entry on oeis.org

1, 2, 128, 729, 1458, 4096, 65536, 93312, 2985984, 3906250, 16777216, 28697814, 33554432, 47775744, 80707214, 244140625, 250000000, 387420489, 1836660096, 2847656250, 4715895382, 5165261696, 12230590464, 13841287201, 17179869184, 21208998746, 24461180928
Offset: 1

Views

Author

XU Pingya, Nov 16 2020

Keywords

Comments

The data are derived from the following formula:
(a^3 - 6*t^3)^3 + (a^3 + 6*t^3)^3 + (-6*a*t^2)^3 = 2*a^9;
(4*a^3 - 3*t^3)^3 + (4*a^3 + 3*t^3)^3 + (-6*a*t^2)^3 = 128*a^9 = 2*4^3*a^9;
(9*a^3 - 2*t^3)^3 + (9*a^3 + 2*t^3)^3 + (-6*a*t^2)^3 = 1458*a^9 = 2*9^3*a^9;
(36*a^3 - t^3)^3 + (36*a^3 + t^3)^3 + (-6*a*t^2)^3 = 93312*a^9 = 2*36^3*a^9;
((3*a^3)*t - 9*t^4)^3 + (9*t^4)^3 + (a^4 - 9*a*t^3)^3 = a^12;
((9*a^3)*t - t^4)^3 + (t^4)^3 + (9*a^4 - 3*a*t^3)^3 = 729*a^12 = 9^3*a^12.

Examples

			128 is a term, because (4 - 3*(2*n - 1)^3, 4 + 3*(2*n - 1)^3, -3*(2*n - 1)^2) is a nontrivial primitive parametric solution of x^3 + y^3 + z^3 = 128.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D5.

Crossrefs

Programs

  • Mathematica
    t1 = 2*{1, 5, 7, 11, 13}^9;
    t2 = 128*{1, 2, 4, 5, 7, 8}^9;
    t3 = 1458*{1, 3, 5, 7, 9}^9;
    t4 = 93312*{1, 2, 3, 4, 5}^9;
    t5 = {1, 2, 4, 5, 7}^12;
    t6 = 729*{1, 2, 3, 4, 5}^12;
    Take[Union[t1, t2, t3, t4, t5, t6], 27]
Showing 1-1 of 1 results.