cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Erich Friedman

Erich Friedman's wiki page.

Erich Friedman has authored 452 sequences. Here are the ten most recent ones:

A381494 Smallest number with reciprocal of period length n in base 7.

Original entry on oeis.org

1, 2, 4, 9, 5, 2801, 36, 29, 64, 27, 11, 1123, 13, 16148168401, 113, 31, 17, 14009, 108, 419, 55, 261, 23, 47, 73, 2551, 53, 81, 145, 59, 99, 311, 256, 3631, 56036, 81229, 135, 223, 1676, 486643, 41, 83, 1017, 166003607842448777, 115, 837, 188, 13722816749522711, 153, 3529, 10204
Offset: 0

Author

Erich Friedman, Feb 25 2025

Keywords

Comments

For n > 1, a(n) is the smallest positive d such that d divides 7^n - 1 and does not divide any of 7^k - 1 for 0 < k < n.

Examples

			a(3)=9 since 1/9 has period 3 in base 7 (.053053053...) and no smaller number has this property.
		

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.

Crossrefs

Programs

  • Maple
    f:= proc(n) local d,k;
          for d in sort(convert(numtheory:-divisors(7^n-1),list)) do
            if andmap(k -> 7^k-1 mod d <> 0, [$1 .. n-1]) then return d fi
          od
    end proc:
    f(0):= 1: f(1):= 2:
    map(f, [$0..80]); # Robert Israel, Feb 28 2025
  • Mathematica
    a[n_] := First[Select[Divisors[7^n - 1], MultiplicativeOrder[7, #] == n &, 1]];
    a[0] = 1; a[1] = 2; Table[a[n], {n, 0, 50}]
  • Python
    from sympy import divisors
    def A381494(n): return next(d for d in divisors(7**n-1) if d>1 and all(pow(7,k,d)!=1 for k in range(1,n))) if n else 1 # Chai Wah Wu, Feb 28 2025

Formula

Conjecture: a(n) = A218358(n) for n>=2. - R. J. Mathar, Mar 03 2025

A381493 Smallest number with reciprocal of period length n in base 8.

Original entry on oeis.org

1, 7, 3, 73, 5, 31, 19, 49, 17, 262657, 11, 23, 37, 79, 43, 631, 97, 103, 81, 32377, 25, 3577, 67, 47, 323, 601, 237, 2593, 29, 233, 209, 2147483647, 193, 199, 307, 71, 405, 223, 571, 937, 187, 13367, 817, 431, 115, 271, 139, 2351, 577, 343, 251
Offset: 0

Author

Erich Friedman, Feb 25 2025

Keywords

Comments

For n > 1, a(n) is the smallest positive d such that d divides 8^n - 1 and does not divide any of 8^k - 1 for 0 < k < n.

Examples

			a(3)=73 because 1/73 has period 3 in base 8 (.007007007...) and no smaller number has this property.
		

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.

Crossrefs

Programs

  • Mathematica
    a[n_] := First[Select[Divisors[8^n - 1], MultiplicativeOrder[8, #] == n &, 1]];
    a[0] = 1; a[1] = 7; Table[a[n], {n, 0, 50}]
  • Python
    from sympy import divisors
    def A381493(n):
        if n == 0: return 1
        for d in divisors(8**n-1):
            if d>1 and all(pow(8,k,d)!=1 for k in range(1,n)):
                return d # Chai Wah Wu, Feb 28 2025

A381370 Smallest number with reciprocal of period length n in base 9.

Original entry on oeis.org

1, 2, 5, 7, 32, 11, 35, 547, 17, 19, 25, 23, 224, 398581, 29, 31, 128, 103, 95, 1597, 352, 43, 115, 47, 97, 151, 53, 109, 928, 59, 155, 683, 256, 161, 515, 71, 608, 18427, 7985, 79, 187, 83, 203, 431, 89, 181, 235, 1223, 896, 491, 101
Offset: 0

Author

Erich Friedman, Feb 25 2025

Keywords

Comments

For n > 1, a(n) is the smallest positive d such that d divides 9^n - 1 and does not divide any of 9^k - 1 for 0 < k < n.

Examples

			a(3)=7 because 1/7 has period 3 in base 9 (.125125125...) and no smaller number has this property.
		

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.

Crossrefs

Programs

  • Mathematica
    a[n_] := First[Select[Divisors[9^n - 1], MultiplicativeOrder[9, #] == n &, 1]];
    a[0] = 1; a[1] = 2; Table[a[n], {n, 0, 50}]
  • Python
    from sympy import divisors
    def A381370(n): return next(d for d in divisors(9**n-1) if d>1 and all(pow(9,k,d)!=1 for k in range(1,n))) if n else 1 # Chai Wah Wu, Feb 28 2025

A381216 Number of isomers of C_n H_{2n+2} O_2.

Original entry on oeis.org

1, 2, 5, 11, 28, 69, 179, 463, 1225, 3246, 8697, 23366, 63137, 171051, 465002, 1266831, 3459262, 9462393, 25926939, 71139400, 195451500, 537608802, 1480316960, 4079977874, 11254956840, 31072771980, 85850016944, 237356027117, 656657132953, 1817758531055, 5034725293449
Offset: 0

Author

Erich Friedman, Feb 17 2025

Keywords

Examples

			a(2)=5 because the following compounds are possible:
     | |       |   |       | |       |     |       |
-O-O-C-C-   -O-C-O-C-   -O-C-C-O-   -C-O-O-C-   -O-C-O-
     | |       |   |       | |       |     |       |
                                                  -C-
                                                   |
		

Programs

  • PARI
    \\ here R(n) gives g.f. of A000598.
    R(n)={my(g=O(x)); for(n=0, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x*x^n)); g}
    seq(n)={my(A=O(x*x^n), p=R(n), p2=subst(p,x,x^2) + A, q=(p^2+p2)/2, q2=subst(q,x,x^2) + A); Vec((p^2/(1 - x^2*q^2) + p2/(1 - x^2*q2))*(1 + x*q)/2)} \\ Andrew Howroyd, Feb 17 2025

Extensions

a(10) onwards from Andrew Howroyd, Feb 17 2025

A378557 Powers of 3 that do not contain the digit 3.

Original entry on oeis.org

1, 9, 27, 81, 729, 2187, 6561, 59049, 177147, 4782969, 1162261467, 7625597484987, 22876792454961, 16677181699666569, 12157665459056928801, 717897987691852588770249, 174449211009120179071170507, 11972515182562019788602740026717047105681
Offset: 1

Author

Erich Friedman, Nov 30 2024

Keywords

Comments

Any additional terms have exponent at least 10^5.

Crossrefs

Programs

  • Mathematica
    Select[3^Range[0,100000],Not[MemberQ[IntegerDigits[#],3]]&]

Formula

a(n) = 3^A131629(n).

A378556 Powers of 2 that do not include the digit 2.

Original entry on oeis.org

1, 4, 8, 16, 64, 4096, 16384, 65536, 1048576, 4194304, 8388608, 67108864, 17179869184, 34359738368, 68719476736, 549755813888, 4398046511104, 70368744177664, 18014398509481984, 18446744073709551616, 18889465931478580854784, 9671406556917033397649408, 374144419156711147060143317175368453031918731001856
Offset: 1

Author

Erich Friedman, Nov 30 2024

Keywords

Comments

Any additional terms have exponent at least 10^5.

Crossrefs

Programs

  • Mathematica
    Select[2^Range[0,100000],Not[MemberQ[IntegerDigits[#],2]]&]

Formula

a(n) = 2^A034293(n).

A378558 Powers of 4 that do not include the digit 4.

Original entry on oeis.org

1, 16, 256, 65536, 16777216, 1099511627776
Offset: 1

Author

Erich Friedman, Nov 30 2024

Keywords

Comments

Any additional terms have an exponent of at least 10^5.

Crossrefs

Cf. A000302.

Programs

  • Mathematica
    Select[4^Range[0,100000],Not[MemberQ[IntegerDigits[#],4]]&]

A378492 Squares where larger digits have larger multiplicity.

Original entry on oeis.org

0, 1, 4, 9, 144, 441, 1444, 29929, 55225, 166464, 255025, 299209, 633616, 646416, 767376, 4999696, 9696996, 34433424, 228281881, 414041104, 414488881, 424442404, 536663556, 969699600, 1649496996, 1929229929, 2636206336, 2666999449, 2929299129, 2996029696, 4664343616
Offset: 1

Author

Erich Friedman, Nov 28 2024

Keywords

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,S;
       L:= convert(n,base,10);
       S:= Statistics:-Tally(L,output=list);
       S:= sort(S, (a,b) -> lhs(a) < lhs(b));
       andmap(t -> rhs(S[t])Robert Israel, Nov 29 2024
  • Mathematica
    increasingQ[L_]:=Min[Rest[(L-RotateRight[L])]]>0;
    sortedQ[n_]:=increasingQ[Sort[Tally[IntegerDigits[n]]][[All,2]]]
    Select[Range[575000000]^2,sortedQ]

A378400 Number of subsets of {1,2,3,...,n}^2 with the property that every point has exactly two other closest points.

Original entry on oeis.org

1, 1, 2, 8, 52, 676, 14463
Offset: 0

Author

Erich Friedman, Nov 24 2024

Keywords

Examples

			For n=3, the a(3)=8 subsets are
  ...  oo.  .oo  ...  ...  ooo  .o.  o.o
  ...  oo.  .oo  oo.  .oo  o.o  o.o  ...
  ...  ...  ...  oo.  .oo  ooo  .o.  o.o
For n=4, the a(4)=52 subsets include
  .o..  .o..  oooo  oo.o  ..oo  ooo.
  o.o.  ...o  o..o  oo..  o.oo  o.o.
  .o..  o...  oo.o  ..oo  ....  o.o.
  ...o  ..o.  .ooo  ..oo  o.o.  ooo.
		

Crossrefs

Cf. A297664.

Programs

  • Mathematica
    d[p1_,p2_]:=(p1-p2).(p1-p2)
    dists[L_,pt_]:=Sort[Map[d[pt,#]&,Complement[L,{pt}]]]
    check[L_,pt_]:=(L =={})||((Length[L]>= 3)&&(dists[L,pt][[1]]==dists[L,pt][[2]])&&(dists[L,pt][[2]]< dists[L,pt][[3]]))
    check[L_]:=Apply[And,Map[check[L, #]&,L]]
    Table[Length[Select[Tuples[Tuples[{0,1},n],n],check[Position[#, 1]]&]],{n,0,5}]

Extensions

a(6) from Michael S. Branicky, Jan 01 2025

A378498 Squares where larger digits have smaller multiplicity.

Original entry on oeis.org

1, 4, 9, 100, 121, 225, 400, 484, 676, 900, 10000, 11881, 40000, 44944, 69696, 90000, 111556, 202500, 220900, 225625, 232324, 261121, 265225, 300304, 442225, 444889, 695556, 1000000, 1002001, 1020100, 1210000, 2250000, 2295225, 4000000, 4008004, 4080400, 4840000, 5112121, 6760000, 8008900, 9000000
Offset: 1

Author

Erich Friedman, Nov 28 2024

Keywords

Comments

Conjecture: a(n) ≍ n^2. - Charles R Greathouse IV, Nov 29 2024

Crossrefs

Programs

  • Mathematica
    decreasingQ[L_]:=Max[Rest[(L-RotateRight[L])]]<0;
    sortedQ[n_]:=decreasingQ[Sort[Tally[IntegerDigits[n]]][[All,2]]];
    Select[Range[10000]^2, sortedQ]
  • PARI
    has(n)=my(d=matreduce(digits(n))[,2]); for(i=2,#d, if(d[i]>=d[i-1], return(0))); 1
    list(lim)=my(v=List()); for(n=1,sqrtint(lim\1), if(has(n^2), listput(v,n^2))); Vec(v) \\ Charles R Greathouse IV, Nov 29 2024

Formula

n^2 << a(n) << 1.001^n. - Charles R Greathouse IV, Nov 29 2024