Sergey Kirgizov has authored 10 sequences.
A343773
Excess of the number of even Motzkin n-paths (A107587) over the odd ones (A343386).
Original entry on oeis.org
1, 1, 0, -2, -3, 1, 11, 15, -13, -77, -86, 144, 595, 495, -1520, -4810, -2485, 15675, 39560, 6290, -159105, -324805, 87075, 1592843, 2616757, -2136539, -15726114, -20247800, 32296693, 152909577, 145139491, -417959049, -1460704685, -885536173, 4997618808, 13658704994
Offset: 0
G.f. = 1 + x - 2*x^3 - 3*x^4 + x^5 + 11*x^6 + 15*x^7 - 13*x^8 - 77*x^9 - 86*x^10 + 144*x^11 + ...
-
With[{$MaxExtraPrecision = 1000}, CoefficientList[Series[(-1 + x + Sqrt[1 - 2 x + 5 x^2])/(2 x^2), {x, 0, 36}], x] ] (* Michael De Vlieger, May 01 2021 *)
a[n_] := Hypergeometric2F1[(1 - n)/2, -n/2, 2, -4];
Table[a[n], {n, 0, 35}] (* Peter Luschny, May 30 2021 *)
a[ n_] := If[n<0, 0, SeriesCoefficient[Nest[1 + x*# - (x*#)^2&, 1 + O[x], n], {x, 0, n}]]; (* Michael Somos, Oct 27 2024 *)
a[ n_] := SeriesCoefficient[2/(1 - x + (1 - 2*x + 5*x^2)^(1/2)), {x, 0, n}]; (* Michael Somos, Oct 27 2024 *)
-
{a(n) = my(y = 1 + O(x)); for(i = 1, n, y = 1 + x*y - x^2*y^2); polcoeff(y, n)}; /* Michael Somos, Oct 27 2024 */
-
{a(n) = polcoeff( 2/(1 - x + (1 - 2*x + 5*x^2 + x*O(x^n))^(1/2)), n)}; /* Michael Somos, Oct 27 2024 */
-
A343773 = [1, 1]
for n in range(2, 801):
A343773.append(((2*n+1)*A343773[-1]
- 5*(n-1)*A343773[-2]) // (n+2))
A343386
Number of odd Motzkin n-paths, i.e., Motzkin n-paths with an odd number of up steps.
Original entry on oeis.org
0, 0, 1, 3, 6, 10, 20, 56, 168, 456, 1137, 2827, 7458, 20670, 57577, 157691, 427976, 1170552, 3248411, 9096497, 25505562, 71436182, 200338074, 564083786, 1595055520, 4522769520, 12842772295, 36514010301, 103995490758, 296794937626, 848620165860, 2430089817720
Offset: 0
G.f. = x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 56*x^7 + 168*x^8 + ...
-
a[n_] := ((n - 1) n HypergeometricPFQ[{1/2 - n/4, 3/4 - n/4, 1 - n/4, 5/4 - n/4}, {3/2, 3/2, 2}, 16])/2;
Table[a[n], {n, 0, 31}] (* Peter Luschny, Sep 24 2021 *)
-
M = [4, 9]; E = [1, 1, 1, 1, 3];
A343386 = [0, 0, 1, 3, 6]
for n in range(5, 801):
M.append(((2*n+1)*M[1]+(3*n-3)*M[0])//(n+2))
E.append(((5*n**2+n-3)*E[4] - (10*n**2-16*n+3)*E[3]
+ (10*n**2-34*n+27)*E[2] + (11*n-5)*(n-3)*E[1]
- 15*(n-3)*(n-4)*E[0]) // (n*n+2*n))
A343386.append(M[-1] - E[-1])
M.pop(0); E.pop(0)
A340569
Total number of consecutive triples matching the pattern 123 in all faro permutations of length n.
Original entry on oeis.org
0, 0, 0, 1, 4, 10, 24, 53, 116, 246, 520, 1082, 2248, 4628, 9520, 19469, 39796, 81022, 164904, 334670, 679064, 1374924, 2783440, 5625666, 11368904, 22945820, 46307664, 93358228, 188202256, 379078952, 763506784, 1536708413, 3092806516, 6220970702, 12512656744, 25154958278
Offset: 0
For n = 4, there are 6 faro permutations: 1234, 1243, 1324, 2134, 2143, 3142. They contain in total 4 consecutive patterns 123.
A001405 counts faro permutations of length n.
-
Table[SeriesCoefficient[x*(1+2*x)*(1-Sqrt[1-4*x^2])/((1-2*x) * (1+Sqrt[1-4*x^2])),{x,0,n}],{n,0,35}] (* Stefano Spezia, Jan 12 2021 *)
A340568
Total number of consecutive triples matching the pattern 132 in all faro permutations of length n.
Original entry on oeis.org
0, 0, 0, 1, 4, 10, 28, 61, 152, 318, 748, 1538, 3496, 7124, 15832, 32093, 70192, 141814, 306508, 617878, 1323272, 2663340, 5662600, 11383986, 24061264, 48330540, 101653368, 204049636, 427414672, 857503784, 1789891888, 3589478621, 7469802592, 14974962854, 31081371148
Offset: 0
For n = 4, there are 6 faro permutations: 1234, 1243, 1324, 2134, 2143, 3142. They contain in total 4 consecutive patterns 132 and also 4 consecutive patterns 213.
A001405 counts faro permutations of length n.
A340567
Total number of ascents in all faro permutations of length n.
Original entry on oeis.org
0, 0, 1, 4, 11, 26, 62, 134, 303, 634, 1394, 2872, 6206, 12676, 27068, 54994, 116423, 235706, 495722, 1001168, 2094714, 4223020, 8798756, 17715084, 36782246, 73980516, 153161332, 307808464, 635675228, 1276699336, 2630957432, 5281304554, 10863149303, 21797013946
Offset: 0
For n = 3 there are 3 faro permutations, namely 123, 213, 132. They contain 4 ascents (12, 23, 13 and 13) in total.
A001405 counts faro permutations of length n.
A335203
a(n) is the packing chromatic number of n-hypercube graph.
Original entry on oeis.org
2, 3, 5, 7, 15, 25, 49, 95
Offset: 1
Hypercube of dimension 1 needs 2 colors:
1 --- 2
Hypercube of dimension 2 needs 3 colors:
1 --- 2
| |
| |
3 --- 1
Hypercube of dimension 3 needs 5 colors:
1 ----------- 2
| \ / |
| \ / |
| 4 --- 1 |
| | | |
| | | |
| 2 --- 5 |
| / \ |
| / \ |
3 ----------- 1
- B. Brešar, J. Ferme, S. Klavžar, and D. F. Rall, Survey on packing colorings, Discussiones Mathematicae Graph Theory, to appear (2020).
- W. Goddard, S. M. Hedetniemi, S. T. Hedetniemi, J. M. Harris, and R. F. Rall, Broadcast chromatic numbers of graphs, Ars Combinatoria, 86 (2008) 33-49.
- P. Torres and M. Valencia-Pabon, The packing chromatic number of hypercubes, Discrete Applied Mathematics, 190 (2015), 127-140.
A302483
Number of FF-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are P-equivalent iff the positions of pattern P are identical in these paths.
Original entry on oeis.org
1, 1, 2, 2, 5, 9, 17, 32, 59, 107, 192, 342, 606, 1070, 1885, 3316, 5828, 10237, 17975, 31555, 55387, 97210, 170605, 299405, 525434, 922088, 1618168, 2839704, 4983351, 8745190, 15346758, 26931703, 47261865, 82938813, 145547493, 255418068, 448227487, 786584431
Offset: 0
There are 14 Łukasiewicz of length 4 divided in the 5 following FF-equivalence classes: {FFFF}, {FFU_{1}D}, {U_{1}DFF}, {U_{1}FFD}, {FU_{1}DF, FU_{1}FD, FU_{2}DD, U_{1}DU_{1}D, U_{1}FDF, U_{1}U_{1}DD, U_{2}DDF, U_{2}DFD, U_{2}FDD, U_{3}DDD}.
-
CoefficientList[Series[(1 - 3 x + 4 x^2 - 5 x^3 + 7 x^4 - 7 x^5 + 6 x^6 - 3 x^7 + x^8)/((1 - 2 x + x^2 - x^3) (1 - x)^2), {x, 0, 32}], x] (* Michael De Vlieger, Apr 12 2018 *)
-
x='x+O('x^99); Vec((1-3*x+4*x^2-5*x^3+7*x^4-7*x^5+6*x^6-3*x^7+x^8)/((1-2*x+x^2-x^3)*(1-x)^2)) \\ Altug Alkan, Apr 12 2018
A278679
Popularity of left children in treeshelves avoiding pattern T213.
Original entry on oeis.org
1, 5, 24, 128, 770, 5190, 38864, 320704, 2894544, 28382800, 300575968, 3419882304, 41612735632, 539295974000, 7417120846080, 107904105986048, 1655634186628352, 26721851169634560, 452587550053179392, 8026445538106839040, 148751109541600495104
Offset: 2
Treeshelves of size 3:
1 1 1 1 1 1
/ \ / \ / \ / \
2 2 / \ 2 \ / 2
/ \ 2 2 3 3
3 3 \ /
3 3
Pattern T213:
1
/ \
2 \
3
Treeshelves of size 3 that avoid pattern T213:
1 1 1 1 1
/ \ / \ / \
2 2 / \ / 2
/ \ 2 2 3
3 3 \ /
3 3
Popularity of left children is 5.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.
- J. Françon, Arbres binaires de recherche : propriétés combinatoires et applications, Revue française d'automatique informatique recherche opérationnelle, Informatique théorique, 10 no. 3 (1976), p. 35-50.
-
terms = 21;
egf = (E^(Sqrt[2] z)(4z - 4) - (Sqrt[2] - 2) E^(2 Sqrt[2] z) + Sqrt[2] + 2)/((Sqrt[2] - 2) E^(Sqrt[2] z) + 2 + Sqrt[2])^2;
CoefficientList[egf + O[z]^(terms + 2), z]*Range[0, terms + 1]! // Round // Drop[#, 2]& (* Jean-François Alcover, Jan 26 2019 *)
-
## by Taylor expansion
from sympy import *
from sympy.abc import z
h = (exp(sqrt(2)*z) * (4*z-4) - (sqrt(2)-2)*exp(2*sqrt(2)*z) + sqrt(2) + 2) / ((sqrt(2)-2)*exp(sqrt(2)*z) + 2 + sqrt(2))**2
NUMBER_OF_COEFFS = 20
coeffs = Poly(series(h,n = NUMBER_OF_COEFFS)).coeffs()
coeffs.reverse()
## and remove first coefficient 1 that corresponds to O(n**k)
coeffs.pop(0)
print([coeffs[n]*factorial(n+2) for n in range(len(coeffs))])
A278678
Popularity of left children in treeshelves avoiding pattern T321.
Original entry on oeis.org
1, 4, 19, 94, 519, 3144, 20903, 151418, 1188947, 10064924, 91426347, 887296422, 9164847535, 100398851344, 1162831155151, 14198949045106, 182317628906283, 2455925711626404, 34632584722468115, 510251350142181470, 7840215226100517191, 125427339735162102104
Offset: 2
Treeshelves of size 3:
1 1 1 1 1 1
/ \ / \ / \ / \
2 2 / \ 2 \ / 2
/ \ 2 2 3 3
3 3 \ /
3 3
Pattern T321:
1
/
2
/
3
Treeshelves of size 3 that avoid pattern T321:
1 1 1 1 1
\ / \ / \ / \
2 / \ 2 \ / 2
\ 2 2 3 3
3 \ /
3 3
Popularity of left children is 4.
- Alois P. Heinz, Table of n, a(n) for n = 2..483
- Jean-Luc Baril, Sergey Kirgizov, Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.
- J. Françon, Arbres binaires de recherche : propriétés combinatoires et applications, Revue française d'automatique informatique recherche opérationnelle, Informatique théorique, 10 no. 3 (1976), pp. 35-50
-
b:= proc(u, o) option remember; `if`(u+o=0, 1,
add(b(o-1+j, u-j), j=1..u))
end:
a:= n-> (n+1)*b(n+1, 0)-b(n+2, 0):
seq(a(n), n=2..25); # Alois P. Heinz, Oct 27 2017
-
b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[o-1+j, u-j], {j, 1, u}]];
a[n_] := (n+1)*b[n+1, 0] - b[n+2, 0];
Table[a[n], {n, 2, 25}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
-
# by Taylor expansion
from sympy import *
from sympy.abc import z
h = (-sin(z) + 1 + (z-1)*cos(z))/ (1-sin(z))**2
NUMBER_OF_COEFFS = 20
coeffs = Poly(series(h,n = NUMBER_OF_COEFFS)).coeffs()
coeffs.reverse()
# and remove first coefficient 1 that corresponds to O(n**k)
coeffs.pop(0)
print([coeffs[n]*factorial(n+2) for n in range(len(coeffs))])
A278677
a(n) = Sum_{k=0..n} A011971(n, k)*(k + 1). The Aitken-Bell triangle considered as a linear transform applied to the positive numbers.
Original entry on oeis.org
1, 5, 23, 109, 544, 2876, 16113, 95495, 597155, 3929243, 27132324, 196122796, 1480531285, 11647194573, 95297546695, 809490850313, 7126717111964, 64930685865768, 611337506786061, 5940420217001199, 59502456129204083, 613689271227219015, 6510381400140132872
Offset: 0
Treeshelves of size 3:
1 1 1 1 1 1
/ \ / \ / \ / \
2 2 / \ 2 \ / 2
/ \ 2 2 3 3
3 3 \ /
3 3
Pattern T231:
1
/
/
2
\
3
Treeshelves of size 3 that avoid pattern T231:
1 1 1 1 1
/ \ \ / \ / \
2 2 \ 2 \ / 2
/ \ 2 3 3
3 3 /
3
Popularity of left children here is 5.
- Alois P. Heinz, Table of n, a(n) for n = 0..572
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.
- J. Françon, Arbres binaires de recherche : propriétés combinatoires et applications, Revue française d'automatique informatique recherche opérationnelle, Informatique théorique, 10 no. 3 (1976), pp. 35-50.
Cf.
A000110,
A000111,
A000142,
A001286,
A008292,
A011971,
A131178,
A278678,
A278679,
A285595,
A286897,
A367955.
-
b:= proc(n, m) option remember; `if`(n=0, [1, 0],
(p-> p+[0, p[1]*n])(b(n-1, m+1))+m*b(n-1, m))
end:
a:= n-> b(n+1, 0)[2]:
seq(a(n), n=0..22); # Alois P. Heinz, Dec 15 2023
# Using the generating function:
gf := ((exp(z + exp(z)-1)*(z-1)) + exp(exp(z)-1))/z^2: ser := series(gf, z, 25):
seq((n+2)!*coeff(ser, z, n), n=0..22); # Peter Luschny, Feb 01 2025
-
a[n_] := (n+3) BellB[n+2] - BellB[n+3];
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Dec 01 2018 *)
-
from sympy import bell
HOW_MANY = 30
print([(n + 3) * bell(n+2) - bell(n + 3) for n in range(HOW_MANY)])
Comments