G.f.: A(x) = ( 1 - x - (1-2*x-3*x^2)^(1/2) ) / (2*x^2).
G.f. A(x) satisfies A(x) = 1 + x*A(x) + x^2*A(x)^2.
G.f.: F(x)/x where F(x) is the reversion of x/(1+x+x^2). -
Joerg Arndt, Oct 23 2012
a(n) = (-1/2) Sum_{i+j = n+2, i >= 0, j >= 0} (-3)^i*C(1/2, i)*C(1/2, j).
a(n) = (3/2)^(n+2) * Sum_{k >= 1} 3^(-k) * Catalan(k-1) * binomial(k, n+2-k). [Doslic et al.]
a(n) ~ 3^(n+1)*sqrt(3)*(1 + 1/(16*n))/((2*n+3)*sqrt((n+2)*Pi)). [Barcucci, Pinzani and Sprugnoli]
Limit_{n->infinity} a(n)/a(n-1) = 3. [Aigner]
a(n+2) - a(n+1) = a(0)*a(n) + a(1)*a(n-1) + ... + a(n)*a(0). [Bernhart]
a(n) = (1/(n+1)) * Sum_{i} (n+1)!/(i!*(i+1)!*(n-2*i)!). [Bernhart]
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*
A000108(k+1), inv. Binomial Transform of
A000108.
a(n) = (1/(n+1))*Sum_{k=0..ceiling((n+1)/2)} binomial(n+1, k)*binomial(n+1-k, k-1);
D-finite with recurrence: (n+2)*a(n) = (2*n+1)*a(n-1) + (3*n-3)*a(n-2). (End)
The Hankel transform of this sequence gives
A000012 = [1, 1, 1, 1, 1, 1, ...]. E.g., Det([1, 1, 2, 4; 1, 2, 4, 9; 2, 4, 9, 21; 4, 9, 21, 51]) = 1. -
Philippe Deléham, Feb 23 2004
a(n) = (1/(n+1))*Sum_{j=0..floor(n/3)} (-1)^j*binomial(n+1, j)*binomial(2*n-3*j, n). -
Emeric Deutsch, Mar 13 2004
G.f.: A(x)=(1-y+y^2)/(1-y)^2 where (1+x)*(y^2-y)+x=0; A(x)=4*(1+x)/(1+x+sqrt(1-2*x-3*x^2))^2; a(n)=(3/4)*(1/2)^n*Sum_(k=0..2*n, 3^(n-k)*C(k)*C(k+1, n+1-k) ) + 0^n/4 [after Doslic et al.]. -
Paul Barry, Feb 22 2005
Asymptotic formula: a(n) ~ sqrt(3/4/Pi)*3^(n+1)/n^(3/2). -
Benoit Cloitre, Jan 25 2007
a(n) = (1/(2*Pi))*Integral_{x=-1..3} x^n*sqrt((3-x)*(1+x)) is the moment representation. -
Paul Barry, Sep 10 2007
Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example, Phi([1]) is the Catalan numbers
A000108. The present sequence is Phi([0,1,1]), see the 6th formula. -
Gary W. Adamson, Oct 27 2008
G.f.: 1/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x-x^2/.... (continued fraction). -
Paul Barry, Dec 06 2008
G.f.: 1/(1-(x+x^2)/(1-x^2/(1-(x+x^2)/(1-x^2/(1-(x+x^2)/(1-x^2/(1-.... (continued fraction). -
Paul Barry, Feb 08 2009
a(n) = (-3)^(1/2)/(6*(n+2)) * (-1)^n*(3*hypergeom([1/2, n+1],[1],4/3) - hypergeom([1/2, n+2],[1],4/3)). -
Mark van Hoeij, Nov 12 2009
G.f.: 1/(1-x/(1-x/(1-x^2/(1-x/(1-x/(1-x^2/(1-x/(1-x/(1-x^2/(1-... (continued fraction). -
Paul Barry, Mar 02 2010
G.f.: 1/(1-x/(1-x/(1+x-x/(1-x/(1+x-x/(1-x/(1+x-x/(1-x/(1+x-x/(1-... (continued fraction). -
Paul Barry, Jan 26 2011 [Adds apparently a third '1' in front. -
R. J. Mathar, Jan 29 2011]
Let A(x) be the g.f., then B(x)=1+x*A(x) = 1 + 1*x + 1*x^2 + 2*x^3 + 4*x^4 + 9*x^5 + ... = 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1+x) (continued fraction); more generally B(x)=C(x/(1+x)) where C(x) is the g.f. for the Catalan numbers (
A000108). -
Joerg Arndt, Mar 18 2011
a(n) = (2/Pi)*Integral_{x=-1..1} (1+2*x)^n*sqrt(1-x^2). -
Peter Luschny, Sep 11 2011
G.f.: (1-x-sqrt(1-2*x-3*(x^2)))/(2*(x^2)) = 1/2/(x^2)-1/2/x-1/2/(x^2)*G(0); G(k) = 1+(4*k-1)*x*(2+3*x)/(4*k+2-x*(2+3*x)*(4*k+1)*(4*k+2) /(x*(2+3*x)*(4*k+1)+(4*k+4)/G(k+1))), if -1 < x < 1/3; (continued fraction). -
Sergei N. Gladkovskii, Dec 01 2011
G.f.: (1-x-sqrt(1-2*x-3*(x^2)))/(2*(x^2)) = (-1 + 1/G(0))/(2*x); G(k) = 1-2*x/(1+x/(1+x/(1-2*x/(1-x/(2-x/G(k+1)))))); (continued fraction). -
Sergei N. Gladkovskii, Dec 11 2011
0 = a(n) * (9*a(n+1) + 15*a(n+2) - 12*a(n+3)) + a(n+1) * ( -3*a(n+1) + 10*a(n+2) - 5*a(n+3)) + a(n+2) * (a(n+2) + a(n+3)) unless n=-2. -
Michael Somos, Mar 23 2012
a(n) = (-1)^n*hypergeometric([-n,3/2],[3],4). -
Peter Luschny, Aug 15 2012
Representation in terms of special values of Jacobi polynomials P(n,alpha,beta,x), in Maple notation: a(n)= 2*(-1)^n*n!*JacobiP(n,2,-3/2-n,-7)/(n+2)!, n>=0. -
Karol A. Penson, Jun 24 2013
G.f.: Q(0)/x - 1/x, where Q(k) = 1 + (4*k+1)*x/((1+x)*(k+1) - x*(1+x)*(2*k+2)*(4*k+3)/(x*(8*k+6)+(2*k+3)*(1+x)/Q(k+1))); (continued fraction). -
Sergei N. Gladkovskii, May 14 2013
Catalan(n+1) = Sum_{k=0..n} binomial(n,k)*a(k). E.g.: 42 = 1*1 + 4*1 + 6*2 + 4*4 + 1*9. -
Doron Zeilberger, Mar 12 2015
G.f. A(x) with offset 1 satisfies: A(x)^2 = A( x^2/(1-2*x) ). -
Paul D. Hanna, Nov 08 2015
a(n) = a(n-1) +
A002026(n-1). Number of Motzkin paths that start with an F step plus number of Motzkin paths that start with an U step. -
R. J. Mathar, Jul 25 2017
G.f.: A(x) = exp(int((E(x)-1)/x dx)), where E(x) is the g.f. of
A002426. Equivalently, E(x) = 1 + x*A'(x)/A(x). -
Alexander Burstein, Oct 05 2017
G.f. A(x) satisfies: A(x) = Sum_{j>=0} x^j * Sum_{k=0..j} binomial(j,k)*x^k*A(x)^k. -
Ilya Gutkovskiy, Apr 11 2019
G.f.: 2/(1 - x + sqrt(1-2*x-3*x^2)).
Sum_{n>=0} 1/a(n) = 2.941237337631025604300320152921013604885956025483079699366681494505960039781389... -
Vaclav Kotesovec, Jun 17 2021
Let a(-1) = (1 - sqrt(-3))/2 and a(n) = a(-3-n)*(-3)^(n+3/2) for all n in Z. Then a(n) satisfies my previous formula relation from Mar 23 2012 now for all n in Z. -
Michael Somos, Apr 17 2022
Let b(n) = 1 for n <= 1, otherwise b(n) = Sum_{k=2..n} b(k-1) * b(n-k), then a(n) = b(n+1) (conjecture). -
Joerg Arndt, Jan 16 2023
G.f.: A(x) = 1/(1 + x)*c(x/(1 + x))^2 = 1 + x/(1 + x)*c(x/(1 + x))^3, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers
A000108.
A(x) = 1/(1 - 3*x)*c(-x/(1 -3*x))^2.
a(n+1) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n, k)*
A000245(k+1).
a(n) = 3^n * Sum_{k = 0..n} (-3)^(-k)*binomial(n, k)*Catalan(k+1).
a(n) = 3^n * hypergeom([3/2, -n], [3], 4/3). (End)
G.f. A(x) satisfies A(x) = exp( x*A(x) + Integral x*A(x)/(1 - x^2*A(x)) dx ). -
Paul D. Hanna, Mar 04 2024
Comments