Mike Zabrocki has authored 66 sequences. Here are the ten most recent ones:
A371505
Number of sub-monoids of the monoid of uniform block permutations of size n that contain the symmetric group S_n.
Original entry on oeis.org
1, 2, 3, 6, 10, 31, 63, 287, 1099, 8640, 62658, 1546891, 29789119, 2525655957
Offset: 1
a(3) = 3 because the uniform block permutations of size 3; S_3; and the monoid consisting of S_3 and the element with one block are the only three sub-monoids.
- D. G. FitzGerald, A presentation for the monoid of uniform block permutations, Bulletin of the Australian Mathematical Society, 68(2) (2003), 317--324.
- Rosa Orellana, Franco Saliola, Anne Schilling, and Mike Zabrocki, Plethysm and the algebra of uniform block permutations, Alg. Comb., Volume 5, no. 5 (2022), pp. 1165--1203.
- Rosa Orellana, Franco Saliola, Anne Schilling, and Mike Zabrocki, The lattice of submonoids of the uniform block permutations containing the symmetric group, arXiv:2405.09710 [math.CO], 2024. See p. 3.
A273396
Indecomposable collections of multisets with a total of n objects having entries {1,2,...,k} for some k<=n or INVERTi transform of A255906.
Original entry on oeis.org
0, 1, 3, 9, 39, 201, 1227, 8305, 61383, 487761, 4131819, 37072361, 350644047, 3482957945, 36220558835, 393329507169, 4450157382383, 52354044069009, 639307054297779, 8090092395577625, 105935581968131399, 1433456549698679385, 20018656224312123051
Offset: 0
a(3) = 9 because there are 16 multiset partitions, 9 of them are indecomposable ({{1},{1},{1}}, {{1},{1,1}}, {{1,1,1}}, {{1},{1,2}}, {{2},{1,2}}, {{1,1,2}}, {{1,2,2}}, {{2},{1,3}}, {{1,2,3}}) and 7 are decomposable ({{1},{1},{2}}, {{1},{2},{2}}, {{1},{2,2}}, {{2},{1,1}}, {{1},{2},{3}}, {{1},{2,3}}, {{3},{1,2}}).
- P. A. MacMahon, Combinatory Analysis, vol 1, Cambridge, 1915.
A249565
Number of self-avoiding walks on the truncated square tiling with n steps.
Original entry on oeis.org
1, 3, 6, 12, 22, 42, 80, 152, 284, 536, 988, 1848, 3412, 6352, 11724, 21718, 39952, 73808, 135668, 250188, 459172, 844888, 1548608, 2845186, 5211548, 9563768, 17501272, 32079524, 58660712, 107425356, 196320596, 359232144, 656099656, 1199676412, 2189995764
Offset: 0
There are 6 paths of length 2 in the truncated square lattice corresponding to the reduced words in the Coxeter group s_0 s_2, s_0 s_1, s_1 s_2, s_1 s_0, s_2 s_0, s_2 s_1.
- Andrey Zabolotskiy, Table of n, a(n) for n = 0..47 (from Alm, 2005)
- Sven Erick Alm, Upper and lower bounds for the connective constants of self-avoiding walks on the Archimedean and Laves lattices, J. Phys. A.: Math. Gen., 38 (2005), 2055-2080. Also technical report of the same name, 2004. See Table 2, column (4.8^2).
- I. Jensen, and A. J. Guttmann, Self-avoiding walks, neighbour-avoiding walks and trails on semi-regular lattices, J. Phys. A., 31, (1998), 8137-45.
- Keh Ying Lin and Chi Chen Chang, Self-avoiding walks on the 4-8 lattice, International Journal of Modern Physics B, 16 (2002), 1241-1246.
- Wikipedia, Truncated square tiling
- Wikipedia, Connective constant
- M. Zabrocki, SAWs and SAPs on the Cayley graph of a group, notes 2014.
a(19)-a(21) corrected based on Alm (2005) and Lin & Chang (2002), more terms added by
Andrey Zabolotskiy, Oct 18 2024
A249795
Self-avoiding walks with n steps on the truncated trihexagonal tiling or (4,6,12) lattice.
Original entry on oeis.org
1, 3, 6, 12, 22, 42, 78, 146, 264, 490, 894, 1646, 3012, 5528, 10086, 18476, 33648, 61472, 111702, 203552, 368872, 670538, 1213118, 2201208, 3980380, 7214200, 13044916, 23627064, 42714902, 77316682, 139695536, 252664214, 456138008, 824332804, 1487051098, 2685425808
Offset: 0
There are 6 paths of length 2 on the (4,6,12) lattice corresponding to the reduced words in the Coxeter group s_0 s_2, s_0 s_1, s_1 s_2, s_1 s_0, s_2 s_0, s_2 s_1.
- Andrey Zabolotskiy, Table of n, a(n) for n = 0..47 (from Alm, 2005; terms 0..42 from Sean A. Irvine)
- Sven Erick Alm, Upper and lower bounds for the connective constants of self-avoiding walks on the Archimedean and Laves lattices, J. Phys. A.: Math. Gen., 38 (2005), 2055-2080. Also technical report of the same name, 2004. See Table 2, column (4.6.12).
- Sean A. Irvine, Java program (github)
- Wikipedia, truncated trihexagonal tiling
A129550
Number of real polynomial invariants for the action of 4 copies of U(2) on the fourth tensor power of C^2.
Original entry on oeis.org
1, 1, 8, 20, 98, 293, 1128, 3409, 10846, 30480, 84652, 217677, 544312, 1289225, 2961626, 6528284, 13980717, 28963980, 58464510, 114806429, 220298632, 412950779, 758418342, 1365044296, 2412766496, 4189995629, 7159916414
Offset: 0
- M. W. Hero and J. F. Willenbring, Stable Hilbert series as related to the measurement of quantum entanglement, Discrete Math., 309 (2010), 6508-6514.
- Nolan R. Wallach, The Hilbert series for measures of entanglement in 4 qubits, Acta Appl. Math. 86(2005),203-220.
A129130
Number of triples of standard tableaux with the same shape of height less than or equal to three.
Original entry on oeis.org
1, 1, 2, 10, 63, 531, 6201, 70477, 897149, 12772405, 188334604, 2939523104, 47902337803, 809518276503, 14134544880444, 252955559204532, 4651455689358657, 87356706437180529, 1669767921758484702
Offset: 0
f_111 = f_3 = 1, f_21 = 2 therefore a(3) = f_111^3 + f_21^3 + f_3^3 = 1+8+1 = 10
A129549
Dimension of space of measures of entanglement that are homogeneous of degree 2n, for the case of four qubits.
Original entry on oeis.org
1, 3, 20, 78, 352, 1365, 5232, 18271, 60598, 187296, 548020, 1515265, 3991204, 10035401, 24210308, 56188768, 125904351, 273044682, 574635828, 1176027747, 2345376048, 4565886531, 8691118644, 16198834634, 29602895824, 53105875363
Offset: 0
- David Meyer and Nolan Wallach, Invariants for multiple qubits: the case of 3 qubits, Mathematics of quantum computing, Computational Mathematics Series, 77-98, Chapman&Hall/CRC, 2002.
-
t1:=1 + 3*q^4 + 20*q^6 + 76*q^8 + 219*q^10 + 654*q^12 +
1539*q^14 + 3119*q^16 + 5660*q^18 + 9157*q^20 +
12876*q^22 + 16177*q^24 + 18275*q^26 +
18275*q^28 + 16177*q^30 + 12876*q^32 +
9157*q^34 + 5660*q^36 + 3119*q^38 + 1539*q^40 +
654*q^42 + 219*q^44 + 76*q^46 + 20*q^48 + 3*q^50 + q^54;
t2:=(1-q^2)^3*(1-q^4)^11*(1-q^6)^6;
t3:=t1/t2;
t4:=subs(q=sqrt(x),t3);
t5:=series(t4,x,30); # N. J. A. Sloane, Jun 17 2011
A129548
Measures of entanglement in 3-qbits.
Original entry on oeis.org
1, 1, 8, 9, 36, 43, 120, 147, 329, 406, 784, 966, 1680, 2058, 3312, 4026, 6105, 7359, 10648, 12727, 17732, 21021, 28392, 33397, 43953, 51324, 66080, 76636, 96832, 111588, 138720, 158916, 194769, 221901, 268584, 304437, 364420, 411103, 487256, 547239, 642873
Offset: 0
- David Meyer and Nolan Wallach, Invariants for multiple qubits: the case of 3 qubits, Mathematics of quantum computing, Computational Mathematics Series, 77-98, Chapman & Hall/CRC Press, 2002.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Nolan Wallach, The Hilbert series of measures of entanglement for 4 q-bits, Acta Appl. Math. 86(2005), 203-220.
- Index entries for linear recurrences with constant coefficients, signature (2,4,-10,-5,20,0,-20,5,10,-4,-2,1).
-
[(2*n+3+(-1)^n)*(2*n+7+(-1)^n)*(2*n+11+(-1)^n)*(2*n^3+27*n^2+169*n+387-3*(n^2-5*n-31)*(-1)^n)/184320 : n in [0..50]]; // Wesley Ivan Hurt, Oct 15 2015
-
A129548:=n->(2*n+3+(-1)^n)*(2*n+7+(-1)^n)*(2*n+11+(-1)^n)*(2*n^3+27*n^2+169*n+387-3*(n^2-5*n-31)*(-1)^n)/184320: seq(A129548(n), n=0..50); # Wesley Ivan Hurt, Oct 15 2015
-
CoefficientList[Series[(x^2 - x + 1)*(x^2 + 1)/((1 - x)^7*(x + 1)^5), {x, 0, 50}], x] (* Wesley Ivan Hurt, Oct 15 2015 *)
-
Vec(-(x^2-x+1)*(x^2+1)/((x-1)^7*(x+1)^5) + O(x^50)) \\ Colin Barker, Oct 15 2015
A129123
Number of 4-tuples of standard tableau with height less than or equal to 2.
Original entry on oeis.org
1, 1, 2, 17, 98, 882, 7812, 78129, 815474, 8955650, 101869508, 1194964498, 14374530436, 176681194276, 2212121332488, 28145258688369, 363177582488274, 4745064935840178, 62687665026816228, 836447728509168930, 11261240896657686660, 152847558411986548260
Offset: 0
-
[(&+[((n-2*j+1)/(n-j+1))^4*Binomial(n,j)^4: j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Nov 08 2022
-
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
end:
a:= n-> add(b(n, n-2*j)^4, j=0..n/2):
seq(a(n), n=0..21); # Alois P. Heinz, Mar 25 2025
-
Table[Sum[(Binomial[n, k] - Binomial[n, k-1])^4, {k,0, Floor[n/2]}], {n,0,20}] (* Vaclav Kotesovec, Dec 16 2017 *)
-
a(n) = sum(k=0, n\2, (binomial(n, k)-binomial(n, k-1))^4);
-
from math import comb
def A129123(n): return sum((comb(n,j)*(m:=n-(j<<1)+1)//(m+j))**4 for j in range((n>>1)+1)) # Chai Wah Wu, Mar 25 2025
-
def A129123(n): return sum(((n-2*j+1)/(n-j+1))^4*binomial(n,j)^4 for j in range((n//2)+1))
[A129123(n) for n in range(31)] # G. C. Greubel, Nov 08 2022
A124723
Number of ternary Lyndon words with exactly five 1's.
Original entry on oeis.org
2, 12, 56, 224, 806, 2688, 8448, 25344, 73216, 205004, 559104, 1490944, 3899392, 10027008, 25401752, 63504384, 156893184, 383516672, 928514048, 2228433712, 5305794560, 12540968960, 29444014080, 68702699520, 159390262880
Offset: 6
a(7) = 12 because 11111ab, 1111a1b, 111a11b where ab = 22, 23, 32 or 33 are all ternary Lyndon words of length 7 with five 1's.
-
a:= n-> (Matrix([[806, 224, 56, 12, 2, 0$5]]). Matrix(10, (i,j)-> `if`(i=j-1, 1, `if`(j=1, [10, -40, 80, -80, 34, -20, 80, -160, 160, -64] [i], 0)))^(n-10))[1,1]: seq(a(n), n=6..30); # Alois P. Heinz, Aug 04 2008
Comments