cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A259181 a(n) = n*(n+1)*(n+2)*(n+3)*(2*n^2+6*n+7)/360.

Original entry on oeis.org

0, 1, 9, 43, 147, 406, 966, 2058, 4026, 7359, 12727, 21021, 33397, 51324, 76636, 111588, 158916, 221901, 304437, 411103, 547239, 719026, 933570, 1198990, 1524510, 1920555, 2398851, 2972529, 3656233, 4466232, 5420536, 6539016, 7843528, 9358041, 11108769
Offset: 0

Views

Author

Luce ETIENNE, Nov 08 2015

Keywords

Comments

After 0, second bisection of A129548.
This sequence is also the total number of squares of all sizes in i X i subsquares in an n X n grid, whereas A000330 simply gives the number of all sizes of squares in an n X n grid. See illustrations.

Examples

			a(0) = 0; a(1) = 1*1; a(2) = 4*1+1*5 = 9; a(3) = 9*1+4*5+1*14 = 43.
		

Crossrefs

Cf. A060060: (1/6)*Sum_{i=0..n} (i+1)*(i+2)*(2*i+3)*i^2.

Programs

  • PARI
    vector(100, n, n--; n*(n+1)*(n+2)*(n+3)*(2*n^2+6*n+7)/360) \\ Altug Alkan, Nov 08 2015
    
  • PARI
    concat(0, Vec(-x*(x+1)^2 / (x-1)^7 + O(x^100))) \\ Colin Barker, Nov 08 2015

Formula

a(n) = (1/6)*Sum_{i=0..n} (i+1)*(i+2)*(2*i+3)*(n-i)^2.
a(n) = Sum_{i=0..n} A000290(n-i)*A000330(i+1).
G.f.: x*(1 + x)^2 / (1 - x)^7. - Colin Barker, Nov 08 2015
a(n) = (A000539(n+1) - A000217(n+1))/30. - Yasser Arath Chavez Reyes, Feb 24 2024

A129549 Dimension of space of measures of entanglement that are homogeneous of degree 2n, for the case of four qubits.

Original entry on oeis.org

1, 3, 20, 78, 352, 1365, 5232, 18271, 60598, 187296, 548020, 1515265, 3991204, 10035401, 24210308, 56188768, 125904351, 273044682, 574635828, 1176027747, 2345376048, 4565886531, 8691118644, 16198834634, 29602895824, 53105875363
Offset: 0

Views

Author

Mike Zabrocki, Apr 20 2007

Keywords

References

  • David Meyer and Nolan Wallach, Invariants for multiple qubits: the case of 3 qubits, Mathematics of quantum computing, Computational Mathematics Series, 77-98, Chapman&Hall/CRC, 2002.

Crossrefs

Programs

  • Maple
    t1:=1 + 3*q^4 + 20*q^6 + 76*q^8 + 219*q^10 + 654*q^12 +
    1539*q^14 + 3119*q^16 + 5660*q^18 + 9157*q^20 +
    12876*q^22 + 16177*q^24 + 18275*q^26 +
    18275*q^28 + 16177*q^30 + 12876*q^32 +
    9157*q^34 + 5660*q^36 + 3119*q^38 + 1539*q^40 +
    654*q^42 + 219*q^44 + 76*q^46 + 20*q^48 + 3*q^50 + q^54;
    t2:=(1-q^2)^3*(1-q^4)^11*(1-q^6)^6;
    t3:=t1/t2;
    t4:=subs(q=sqrt(x),t3);
    t5:=series(t4,x,30); # N. J. A. Sloane, Jun 17 2011

Formula

a(n) = [q^(2n)] (P(q) + q^54*P(1/q))/((1 - q^2)^3*(1 - q^4)^11*(1 - q^6)^6) where P(q) = 1 + 3*q^4 + 20*q^6 + 76*q^8 + 219*q^10 + 654*q^12 + 1539*q^14 + 3119*q^16 + 5660*q^18 + 9157*q^20 + 12876*q^22 + 16177*q^24 + 18275*q^26.

Extensions

Revised definition from N. J. A. Sloane, Jun 17 2011

A129550 Number of real polynomial invariants for the action of 4 copies of U(2) on the fourth tensor power of C^2.

Original entry on oeis.org

1, 1, 8, 20, 98, 293, 1128, 3409, 10846, 30480, 84652, 217677, 544312, 1289225, 2961626, 6528284, 13980717, 28963980, 58464510, 114806429, 220298632, 412950779, 758418342, 1365044296, 2412766496, 4189995629, 7159916414
Offset: 0

Views

Author

Mike Zabrocki, Apr 20 2007

Keywords

References

  • M. W. Hero and J. F. Willenbring, Stable Hilbert series as related to the measurement of quantum entanglement, Discrete Math., 309 (2010), 6508-6514.
  • Nolan R. Wallach, The Hilbert series for measures of entanglement in 4 qubits, Acta Appl. Math. 86(2005),203-220.

Crossrefs

Formula

G.f.: (R(q) + q^76*R(1/q))/((1 - q^2)*(1 - q^4)^7*(1 - q^6)^6*(1 - q^8)^4*(1 - q^10)) where R(q) = 1 + 6*q^6 + 46*q^8 + 110*q^10 + 344*q^12 + 844*q^14 + 2154*q^16 + 4606*q^18 + 9397*q^20 + 16848*q^22 + 28747*q^24 + 44580*q^26 + 65366*q^28 + 88036*q^30 + 111909*q^32 + 131368*q^34 + 145676*q^36 + 149860/2*q^38.
Showing 1-3 of 3 results.