A381508 Pisano period of Hexanacci numbers (A001592) mod n.
1, 7, 728, 14, 208, 728, 342, 28, 2184, 1456, 354312, 728, 9520, 2394, 1456, 56, 709928, 2184, 5227320, 1456, 124488, 354312, 279840, 728, 1040, 9520, 6552, 2394, 243880, 1456, 71040, 112, 4606056, 4969496, 35568, 2184, 20362908, 5227320, 123760, 1456, 201840
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..222
- Martin Guerra and Doron Zeilberger, Maple program
Programs
-
Maple
# load programs from linked file: seq(Pis([[0$5, 1],[1$6]],n,400000), n=1..16);
-
Python
from math import lcm from functools import lru_cache from sympy import factorint @lru_cache(maxsize=None) def A381508(n): if n == 1: return 1 f = factorint(n).items() if len(f) > 1: return lcm(*(A381508(a**b) for a,b in f)) else: k, x = 1, (0,0,0,0,1,1) while x != (0,0,0,0,0,1): k += 1 x = x[1:]+(sum(x) % n,) return k # Chai Wah Wu, Apr 25 2025
Extensions
a(17)-a(41) from Alois P. Heinz, Apr 25 2025
Comments