cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A339634 Number of final Tic-Tac-Toe positions on a (2*n+1) X 3 board that result in a tie.

Original entry on oeis.org

3, 16, 30, 72, 178, 444, 1114, 2808, 7098, 17984, 45656, 116106, 295718, 754226, 1926060, 4924188, 12602416, 32284214, 82777240, 212415744, 545495716, 1401849594, 3604921774, 9275890122, 23881602058, 61518226734, 158548607640, 408814563524, 1054590179342
Offset: 0

Views

Author

Doron Zeilberger, Taerim Kim, Karnaa Mistry, Weiji Zheng, Dec 10 2020

Keywords

Comments

The number of (2*n+1) X 3 0,1-matrices with 3*n+2 1's and 3*n+1 0's and no consecutive horizontal, vertical, nor diagonal triples of 111 or 000.

Examples

			For n = 0 it is a 3 X 1 matrix, and there are 3 arrangements of 2 1's and a single 0 such that there are no 3-streaks of 1's nor 0's in the matrix.
For n = 1 it is the classic 3 X 3 Tic-Tac-Toe board, having 1's as X's and 0's as O's.
		

Crossrefs

Bisection of A339631 (odd part).
Cf. A339633 (even part).

Programs

  • Maple
    # Maple program adapted from OddTTT3(N) in Project 5 of Doron Zeilberger's Combinatorics Class Fall 2020 (Rutgers University).
    A339634List:=proc(n) local f,i,t,x,N:
    f:=(4*t^17*x^11 + 4*t^16*x^11 + 8*t^16*x^10 + 12*t^15*x^10 + 6*t^15*x^9 + 8*t^14*x^10 + 8*t^14*x^9 + 8*t^13*x^9 - 2*t^13*x^8 + 6*t^12*x^9 - 16*t^12*x^8 - 2*t^11*x^8 - 26*t^11*x^7 - 26*t^10*x^7 - 19*t^10*x^6 - 38*t^9*x^6 - 7*t^9*x^5 - 19*t^8*x^6 - 13*t^8*x^5 - 13*t^7*x^5 - t^7*x^4 - 7*t^6*x^5 + 10*t^6*x^4 - t^5*x^4 + 16*t^5*x^3 + 16*t^4*x^3 + 9*t^4*x^2 + 18*t^3*x^2 + 9*t^2*x^2) / (t^12*x^8 + t^11*x^7 + t^10*x^7 + t^9*x^6 - 2*t^6*x^4 - t^5*x^3 - t^4*x^3 - t^3*x^2 + 1):
    N:=n-1:
    #Take the Taylor expansion up to x^(2*N+2)
    f:=taylor(f,x=0,2*N+3):
    #Extract the coefficients of x^(2*i+1)*t^(3*i+2)
    [3,seq(coeff(coeff(f,x,2*i+1),t,3*i+2),i=1..N)]:
    end:

Formula

a(n) = [x^(2*n+1)*t^ceiling(3*(2*n+1)/2)] (4*t^17*x^11 + 4*t^16*x^11 + 8*t^16*x^10 + 12*t^15*x^10 + 6*t^15*x^9 + 8*t^14*x^10 + 8*t^14*x^9 + 8*t^13*x^9 - 2*t^13*x^8 + 6*t^12*x^9 - 16*t^12*x^8 - 2*t^11*x^8 - 26*t^11*x^7 - 26*t^10*x^7 - 19*t^10*x^6 - 38*t^9*x^6 - 7*t^9*x^5 - 19*t^8*x^6 - 13*t^8*x^5 - 13*t^7*x^5 - t^7*x^4 - 7*t^6*x^5 + 10*t^6*x^4 - t^5*x^4 + 16*t^5*x^3 + 16*t^4*x^3 + 9*t^4*x^2 + 18*t^3*x^2 + 9*t^2*x^2) / (t^12*x^8 + t^11*x^7 + t^10*x^7 + t^9*x^6 - 2*t^6*x^4 - t^5*x^3 - t^4*x^3 - t^3*x^2 + 1) for n >= 1.

A339631 Number of 3 X n matrices with 3*n/2 1's (if n is even) or (3*n+1)/2 1's (if n is odd) that do not have a horizontal nor vertical nor diagonal 3-streak of 1's.

Original entry on oeis.org

1, 3, 18, 16, 28, 30, 58, 72, 140, 178, 334, 444, 824, 1114, 2038, 2808, 5084, 7098, 12730, 17984, 32004, 45656, 80694, 116106, 204004, 295718, 516902, 754226, 1312336, 1926060, 3337682, 4924188, 8502132, 12602416, 21688182, 32284214, 55395140, 82777240, 141651742, 212415744
Offset: 0

Views

Author

Doron Zeilberger, Taerim Kim, Karnaa Mistry, Weiji Zheng, Dec 10 2020

Keywords

Comments

Provided by D. Zeilberger's Maple package (ComboProject5.txt) for Combinatorics Fall 2020 at Rutgers University (see links). Generated using alternating procedures EvenTTT3() and OddTTT3() from this Maple package.

Examples

			For n = 1 it is a 3 X 1 matrix, and there is no way to have a 3-streak of 1's or 0's since there must be 2 1's and 1 0, so there are three matrices [110],[011],[101].
For n = 3 it is the classic Tic-Tac-Toe board, with 1's being X's and 0's being O's.
		

References

  • Doron Zeilberger, Math 454, Section 02 (Combinatorics) Fall 2020 (Rutgers University).

Crossrefs

Bisections give: A339633 (even part), A339634 (odd part).

Programs

  • Julia
    using Nemo
    function A339631List(prec)
        R, t = PolynomialRing(ZZ, "t")
        S, x = PowerSeriesRing(R, prec+1, "x")
        num = (4*t^17*x^11 + 4*t^16*x^11 + 8*t^16*x^10 + 12*t^15*x^10 + 6*t^15*x^9 + 8*t^14*x^10 + 8*t^14*x^9 + 8*t^13*x^9 - 2*t^13*x^8 + 6*t^12*x^9 - 16*t^12*x^8 - 2*t^11*x^8 - 26*t^11*x^7 - 26*t^10*x^7 - 19*t^10*x^6 - 38*t^9*x^6 - 7*t^9*x^5 - 19*t^8*x^6 - 13*t^8*x^5 - 13*t^7*x^5 - t^7*x^4 - 7*t^6*x^5 + 10*t^6*x^4 - t^5*x^4 + 16*t^5*x^3 + 16*t^4*x^3 + 9*t^4*x^2 + 18*t^3*x^2 + 9*t^2*x^2)
        den = (t^12*x^8 + t^11*x^7 + t^10*x^7 + t^9*x^6 - 2*t^6*x^4 - t^5*x^3 - t^4*x^3 - t^3*x^2 + 1)
        ser = divexact(num, den)
        C = [coeff(coeff(ser, n), div(3*n, 2)) for n in 0:prec]
        C[1] = 1; C[2] = 3
        return C
    end
    A339631List(39) |> println # Peter Luschny, Dec 19 2020

Formula

a(n) = [x^n*t^ceiling(3*n/2)] (4*t^17*x^11 + 4*t^16*x^11 + 8*t^16*x^10 + 12*t^15*x^10 + 6*t^15*x^9 + 8*t^14*x^10 + 8*t^14*x^9 + 8*t^13*x^9 - 2*t^13*x^8 + 6*t^12*x^9 - 16*t^12*x^8 - 2*t^11*x^8 - 26*t^11*x^7 - 26*t^10*x^7 - 19*t^10*x^6 - 38*t^9*x^6 - 7*t^9*x^5 - 19*t^8*x^6 - 13*t^8*x^5 - 13*t^7*x^5 - t^7*x^4 - 7*t^6*x^5 + 10*t^6*x^4 - t^5*x^4 + 16*t^5*x^3 + 16*t^4*x^3 + 9*t^4*x^2 + 18*t^3*x^2 + 9*t^2*x^2) / (t^12*x^8 + t^11*x^7 + t^10*x^7 + t^9*x^6 - 2*t^6*x^4 - t^5*x^3 - t^4*x^3 - t^3*x^2 + 1) for n >= 2.
Showing 1-2 of 2 results.