A266969 Integers k such that A001006(k) is divisible by k.
1, 2, 21, 266, 387, 657, 1314, 6291, 16113, 25767, 27594, 41902, 54243, 55314, 56457, 89018, 96141, 155601, 172746, 219842, 294273, 300871, 384426, 412398, 453781, 579474, 653421, 660879, 669609, 951881, 993307, 1117338, 1246077, 1401258, 1438623, 1535409, 1870533
Offset: 1
Keywords
Examples
There are 142547559 ways to join 21 points on a circle by nonintersecting chords. Because of the fact that 142547559 is divisible by 21, 21 is a term of this sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..70
Programs
-
Mathematica
lim = 100000; t = CoefficientList[Series[(1 - x - (1 - 2 x - 3 x^2)^(1/2))/(2 x^2), {x, 0, lim}], x]; Select[Range@ lim, Divisible[t[[# + 1]], #] &] (* Michael De Vlieger, Jan 09 2016, after Jean-François Alcover at A001006 *) seq[kmax_] := Module[{mot1 = 1, mot2 = 2, mot, s = {1, 2}}, Do[mot3 = ((2*k+1)*mot2 + (3*k-3)*mot1)/(k+2); If[Divisible[mot3, k], AppendTo[s, k]]; mot1 = mot2; mot2 = mot3, {k, 3, kmax}]; s]; seq[10^5] (* Amiram Eldar, May 12 2024 *)
-
PARI
lista(kmax) = {my(mot1 = 1, mot2 = 2, mot); print1(1, ", ", 2, ", "); for(k = 3, kmax, mot3 = ((2*k+1)*mot2 + (3*k-3)*mot1)/(k+2); if(!(mot3 % k), print1(k,", ")); mot1 = mot2; mot2 = mot3);} \\ Amiram Eldar, May 12 2024
Extensions
a(8)-a(17) from Michael De Vlieger, Jan 09 2016
a(18)-a(37) from Amiram Eldar, May 12 2024
Comments