Manda Riehl has authored 24 sequences. Here are the ten most recent ones:
A260579
Labelings of n diamond-shaped posets with 4 vertices per diamond where the labels follow the poset relations whose associated reading permutation avoids 321 in the classical sense.
Original entry on oeis.org
1, 2, 106, 5976, 387564, 27247446, 2020632046, 155622020610, 12327937844924, 998103225615208
Offset: 0
For a single diamond (n=1) poset with 4 vertices, we must label the least element 1 and the greatest element 4, and the two central elements can be labeled either 2, 3 or 3, 2 respectively. Thus the associated permutations are 1234 and 1324.
A260332
Labelings of n diamond-shaped posets with 4 vertices per diamond where the labels follow the poset relations whose associated reading permutation avoids 231 in the classical sense.
Original entry on oeis.org
1, 2, 18, 226, 3298, 52450, 881970
Offset: 0
For a single diamond (n=1) poset with 4 vertices, we must label the least element 1 and the greatest element 4, and the two central elements can be labeled either 2, 3 or 3, 2 respectively. Thus the associated permutations are 1234 and 1324.
- Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.
- M. Paukner, L. Pepin, M. Riehl, and J. Wieser, Pattern Avoidance in Task-Precedence Posets, arXiv:1511.00080 [math.CO], 2015.
- Manda Riehl, A 231-avoiding diamond whose associated permutation is 1234.
- Jun Yan, Lattice paths enumerations weighted by ascent lengths, arXiv:2501.01152 [math.CO], 2025. See p. 11.
- Lin Yang, Yu-Yuan Zhang, and Sheng-Liang Yang, The halves of Delannoy matrix and Chung-Feller properties of the m-Schröder paths, Linear Alg. Appl. (2024).
- Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin)
A260331
Labelings of n diamond-shaped posets with 4 vertices per diamond where the labels follow the poset relations.
Original entry on oeis.org
1, 2, 280, 277200, 1009008000, 9777287520000, 207786914375040000, 8508874143657888000000, 611958228411875304960000000, 72094798889203029677337600000000, 13177487340968529764423766528000000000, 3577714168047637768100581459885056000000000, 1392303245637418713834022280928868392960000000000
Offset: 0
For a single diamond (n=1) poset with 4 vertices, we must label the least element 1 and the greatest element 4, and the two central elements can be labeled either 2, 3 or 3, 2 respectively. Thus the associated permutations are 1234 and 1324.
A257995
Forests of binary shrubs on 3n vertices avoiding 321.
Original entry on oeis.org
1, 2, 37, 866, 23285, 679606, 20931998, 669688835, 22040134327, 741386199872, 25376258521393, 880977739374392, 30946637156662975, 1097929752363923490, 39284677690031136567, 1415992852373003788459
Offset: 0
- David Bevan, Table of n, a(n) for n = 0..993
- D Bevan, D Levin, P Nugent, J Pantone, L Pudwell, Pattern avoidance in forests of binary shrubs, arXiv preprint arXiv:1510:08036, 2015
- M. Riehl, Forests of binary shrubs avoiding patterns of length 3
-
gf := RootOf(_Z^10*z^10+18*_Z^9*z^9+123*_Z^8*z^8+(-3*z^8+420*z^7+54*z^6)*_Z^7+(-36*z^7+751*z^6+486*z^5)*_Z^6+(-138*z^6+354*z^5+1053*z^4)*_Z^5+(3*z^6-228*z^5-213*z^4+162*z^3+729*z^2)*_Z^4+(18*z^5-215*z^4+2*z^3-360*z^2)*_Z^3+(15*z^4+24*z^3-71*z^2-54*z)*_Z^2+(-z^4+24*z^3-8*z^2+54*z-1)*_Z+4*z^2+4*z+1)^(1/2):
seq(coeff(series(gf,z,21),z,i),i=0..20);
-
b[k_]:=k(k+1)/2;n[k_]:=n[k]=Join[{b[k+1],b[k+1]-1},Table[b[i],{i,k,1,-1}],{1}];v[1]={1,0,1};v[k_]:=v[k]=Module[{s=MapIndexed[#1n[First@#2]&,v[k-1]]},Table[Total[If[i>Length@#,0,#[[i]]]&/@s],{i,Length@Last@s}]];a[k_]:=a[k]=Total@v[k];Array[a,20] (* David Bevan, Oct 27 2015 *)
A246747
The number of binary heaps on n elements whose breadth-first search reading word avoids 231.
Original entry on oeis.org
1, 1, 1, 2, 3, 7, 14, 37, 80, 222, 544, 1601, 4095, 12416, 33785, 105769, 293747, 935184, 2717376, 8848014, 26134254, 86210716, 262068267, 877833206, 2695238060, 9109101156, 28619396967, 97879220771, 310021153392, 1067906857449, 3440140082033, 11957123227292
Offset: 0
A heap on 4 elements is pictured in the 2nd link, and has breadth first reading word abcd. Then for n = 4 the a(4) = 3 heaps have reading words 1234, 1243, and 1324.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- D. Levin, L. Pudwell, M. Riehl, A. Sandberg, Pattern Avoidance on k-ary Heaps, Slides of Talk, 2014.
- Manda Riehl (joint work with Derek Levin, Lara Pudwell, and Adam Sandberg), Page 92 of the Permutation Patterns 2014 Abstract Book .
- Manda Riehl, A heap on 4 elements
A245894
Number of labeled increasing binary trees on 2n-1 nodes whose breadth-first reading word avoids 231.
Original entry on oeis.org
1, 2, 14, 163, 2558
Offset: 1
When n=3, a(n)=14. In the Links above we show the fourteen labeled increasing binary trees on five nodes whose permutation avoids 231.
A245888 gives the number of unary-binary trees instead of binary trees.
A245901 gives the number of permutations which avoid 231 that are breadth-first reading words on labeled increasing binary trees.
A246829
The number of binary heaps on n elements whose breadth-first search reading word avoids 321.
Original entry on oeis.org
1, 1, 2, 3, 7, 16, 45, 111, 318, 881, 2686, 8033, 25470, 80480, 263977, 862865, 2891344, 9706757, 33178076, 113784968, 395303480, 1379160685, 4859274472, 17195407935, 61310096228, 219520467207, 790749207801, 2859542098634, 10391610220375, 37897965144166
Offset: 1
A heap on 4 elements is pictured in the 2nd link, and has breadth first reading word abcd. Then for n = 4 the a(4) = 3 heaps have reading words 1234, 1243, and 1324.
- D. Levin, L. Pudwell, M. Riehl, A. Sandberg, Pattern Avoidance on k-ary Heaps, Slides of Talk, 2014. [broken link]
- Manda Riehl (joint work with Derek Levin, Lara Pudwell, and Adam Sandberg), Page 92 of the Permutation Patterns 2014 Abstract Book
- Eric Weisstein's World of Mathematics, Heap
A245903
Number of permutations of length 2n-1 avoiding 321 that can be realized on increasing binary trees.
Original entry on oeis.org
1, 2, 10, 79, 753
Offset: 1
For n=3, the a(3)= 10 permutations can be read from the sample trees given in the Links section above.
A245903 appears to be the terms of
A245900 with odd indices.
A245896 is the number of increasing unary-binary trees whose breadth-first reading word avoids 321.
A245902
Number of permutations of length 2n-1 avoiding 312 that can be realized on increasing binary trees.
Original entry on oeis.org
1, 2, 7, 37, 222
Offset: 1
For n=3, the a(3)= 7 permutations can be read from the sample trees given in the Links section above.
A245902 appears to be the terms of
A245899 with odd indices.
A245895 is the number of increasing unary-binary trees whose breadth-first reading word avoids 312.
A245901
Number of permutations of length 2n-1 avoiding 231 that can be realized on increasing binary trees.
Original entry on oeis.org
1, 2, 10, 74, 667
Offset: 1
For n=3, the a(3)= 10 permutations can be read from the sample trees given in the Links section above.
A245901 appears to be the terms of
A245898 with odd indices.
A245894 is the number of increasing unary-binary trees whose breadth-first reading word avoids 231.
Comments