cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A260332 Labelings of n diamond-shaped posets with 4 vertices per diamond where the labels follow the poset relations whose associated reading permutation avoids 231 in the classical sense.

Original entry on oeis.org

1, 2, 18, 226, 3298, 52450, 881970
Offset: 0

Views

Author

Manda Riehl, Jul 29 2015

Keywords

Comments

According to Yang-Jiang (2021) these are the 5-Schroeder numbers. If confirmed, this will prove Michael Weiner's conjectures and enable us to extend the sequence. Yang & Jiang (2021) give an explicit formula for the m-Schroeder numbers in Theorem 2.4. - N. J. A. Sloane, Mar 28 2021
By diamond-shaped poset with 4 vertices, we mean a poset on four elements with e_1 < e_2, e_1 < e_3, e_2 < e_4, e_3 < e_4, and no order relations between e_2 and e_3. In the Hasse diagram for such a poset, we have a least element, two elements in the level above, and one element in the top level, so the diagram resembles a diamond. The associated permutation is the permutation obtained by reading the labels of each poset by levels left to right, starting with the least element.
Also the number of labelings of n diamond-shaped posets with 4 vertices per diamond where the labels follow the poset relations whose associated reading permutation avoids 312 in the classical sense via reverse complement Wilf equivalence.
Conjecture: Also the number of lattice paths (Schroeder paths) from (0,0) to (n,4n) with unit steps N=(0,1), E=(1,0) and D=(1,1) staying weakly above the line y = 4x. - Michael D. Weiner, Jul 24 2019

Examples

			For a single diamond (n=1) poset with 4 vertices, we must label the least element 1 and the greatest element 4, and the two central elements can be labeled either 2, 3 or 3, 2 respectively. Thus the associated permutations are 1234 and 1324.
		

References

  • Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.

Crossrefs

The sequences listed in Yang-Jiang's Table 1 appear to be A006318, A001003, A027307, A034015, A144097, A243675, A260332, A243676. - N. J. A. Sloane, Mar 28 2021

Formula

There is a complicated recursive formula available in Paukner et al.
Yang & Jiang (2021) give an explicit formula for the 5-Schroeder numbers in Theorem 2.4. - N. J. A. Sloane, Mar 28 2021
Conjecture: a(n) = Sum_{k=1..n} binomial(n,k)*binomial(4*n,k-1)*2^k/n for n > 0. - Michael D. Weiner, Jul 23 2019
From Peter Bala, Jun 16 2023: (Start)
Conjectures: 1) the g.f. A(x) = 1 + 2*x + 18*x^2 + 226*x^3 + ... satisfies A(x)^4 = (1/x) * the series reversion of ((1 - x)/(1 + x))^4.
2) Define b(n) = (1/4) * [x^n] ((1 + x)/(1 - x))^(4*n). Then A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ).
3) a(n) = 2 * hypergeom([1 - n, -4*n], [2], 2) for n >= 1 (equivalent to Weiner's conjecture above).
4) [x^n] A(x)^n = (2*n) * hypergeom([1 - n, 1 - 5*n], [2], 2) for n >= 1. (End)

A260579 Labelings of n diamond-shaped posets with 4 vertices per diamond where the labels follow the poset relations whose associated reading permutation avoids 321 in the classical sense.

Original entry on oeis.org

1, 2, 106, 5976, 387564, 27247446, 2020632046, 155622020610, 12327937844924, 998103225615208
Offset: 0

Views

Author

Manda Riehl, Jul 29 2015

Keywords

Comments

By diamond-shaped poset with 4 vertices, we mean a poset on four elements with e_1 < e_2, e_1 < e_3, e_2 < e_4, e_3 < e_4, and no order relations between e_2 and e_3. In the Hasse diagram for such a poset, we have a least element, two elements in the level above, and one element in the top level, so the diagram resembles a diamond. The associated permutation is the permutation obtained by reading the labels of each poset by levels left to right, starting with the least element.
Additional terms were provided by David Bevan.

Examples

			For a single diamond (n=1) poset with 4 vertices, we must label the least element 1 and the greatest element 4, and the two central elements can be labeled either 2, 3 or 3, 2 respectively. Thus the associated permutations are 1234 and 1324.
		

Crossrefs

A357297 T(m,n) is the number of linear extensions of n fork-join DAGs of width m, read by downward antidiagonals.

Original entry on oeis.org

1, 1, 1, 6, 1, 1, 90, 20, 2, 1, 2520, 1680, 280, 6, 1, 113400, 369600, 277200, 9072, 24, 1, 7484400, 168168000, 1009008000, 163459296, 532224, 120, 1, 681080400, 137225088000, 9777287520000, 15205637551104, 237124952064, 49420800, 720, 1, 81729648000, 182509367040000, 207786914375040000, 4847253138540933120, 765985681152147456, 689598074880000, 6671808000, 5040, 1
Offset: 0

Views

Author

José E. Solsona, Feb 22 2023

Keywords

Comments

The fork-join structure is a modeling structure, commonly seen for example in parallel computing, usually represented as a DAG (or poset). It has an initial "fork" vertex that spawns a number of m independent children vertices (the width) whose output edges are connected to a final "join" vertex. More generally, we can have a number n of these DAGs, each one with m+2 vertices.
The family of fork-join DAGs we are considering here can be depicted as follows (we omit the first column for n=0 because the graph is empty in this case):
m\n| 1 | 2 | 3
---------------------------------------------------
0 | o | o o | o o o
| | | | | | | | |
| o | o o | o o o
---------------------------------------------------
| o | o o | o o o
| | | | | | | | |
1 | o | o o | o o o
| | | | | | | | |
| o | o o | o o o
---------------------------------------------------
| o | o o | o o o
| / \ | / \ / \ | / \ / \ / \
2 | o o | o o o o | o o o o o o
| \ / | \ / \ / | \ / \ / \ /
| o | o o | o o o
---------------------------------------------------
| o | o o | o o o
| /|\ | /|\ /|\ | /|\ /|\ /|\
3 | o o o | o o o o o o | o o o o o o o o o
| \|/ | \|/ \|/ | \|/ \|/ \|/
| o | o o | o o o
The array begins like this:
m\n|0 1 2 3 4
-----------------------------------------------------------
0 |1 1 6 90 2520 ... A000680
1 |1 1 20 1680 369600 ... A014606
2 |1 2 280 277200 1009008000 ... A260331
3 |1 6 9072 163459296 15205637551104 ... A361901
4 |1 24 532224 237124952064 765985681152147456 ... A362565
5 |1 120 49420800 689598074880000 97981404549709824000000 ...
with columns: A000012 (n=0) and A000142 (n=1).

Examples

			T(3,1) = 6 is the number of linear extensions of one fork-join DAG of width 3. Let the DAG be labeled as follows:
     1
   / | \
  2  3  4
   \ | /
     5
Then the six linear extensions are:
  1 2 3 4 5
  1 2 4 3 5
  1 3 2 4 5
  1 3 4 1 5
  1 4 2 3 5
  1 4 3 2 5
		

Crossrefs

Rows m = 0..4 give A000680, A014606, A260331, A361901, A362565.
Columns n = 0..1 give A000012, A000142.

Programs

  • Mathematica
    (* Formula *)
    T[m_, n_] := (n*(m+2))!/((m+1)^n*(m+2)^n)
    (* 5 X 5 Table *)
    Table[T[m, n], {m, 0, 5}, {n, 0, 5}]
    (* Eight rows of the triangle *)
    Table[Table[T[m, n - m], {m, 0, n}], {n, 0, 8}]
    (* As a sequence *)
    Flatten[Table[Table[T[m, n - m], {m, 0, n}], {n, 0, 8}]]

Formula

T(m,n) = (n*(m+2))!/((m+1)^n*(m+2)^n).
Showing 1-3 of 3 results.