cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A359647 a(n) = [x^n] hypergeom([1/4, 3/4], [2], 64*x). The central terms of the Motzkin triangle A359364 without zeros.

Original entry on oeis.org

1, 6, 140, 4620, 180180, 7759752, 356948592, 17210021400, 859544957700, 44123307828600, 2315270298060720, 123691561681243920, 6707888537328997200, 368417878127146461600, 20455964090297751153600, 1146556787261188952159280, 64797319609481605046295780
Offset: 0

Views

Author

Peter Luschny, Jan 09 2023

Keywords

Comments

Number of Motzkin paths of length 4n with exactly 2n horizontal steps: a(1) = 6: UDHH, UHDH, UHHD, HUDH, HUHD, HHUD. - Alois P. Heinz, Aug 02 2023

Crossrefs

Programs

  • Maple
    ser := series(hypergeom([1/4, 3/4], [2], 64*x), x, 20):
    seq(coeff(ser, x, n), n = 0..16);

Formula

a(n) = A359364(4*n, 2*n).
a(n) = A000108(n) * A001448(n) = binomial(2*n,n)/(n+1)*binomial(4*n,2*n). - Alois P. Heinz, Aug 02 2023

A025179 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 1. Also a(n) = T(n,n-1), where T is the array defined in A025177.

Original entry on oeis.org

1, 4, 10, 29, 81, 231, 659, 1891, 5443, 15718, 45508, 132067, 384047, 1118820, 3264642, 9539787, 27913083, 81769236, 239794422, 703906719, 2068153899, 6081507831, 17896695831, 52703944965, 155310270101, 457956633826, 1351132539604
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[Rest[CoefficientList[Series[((1-x)^2-(1-x)*Sqrt[1-2*x-3*x^2]) /(2*x*Sqrt[1-2*x-3*x^2]), {x, 0, 20}], x]]] (* Vaclav Kotesovec, Feb 13 2014 *)
  • PARI
    my(x='x+O('x^50)); Vec(((1-x)^2-(1-x +2*x^2)*sqrt(1-2*x-3*x^2)) /(2*x*sqrt(1 - 2*x -3*x^2))) \\ G. C. Greubel, Mar 01 2017

Formula

Equals (1/2) * A024997(n+1).
From Vladeta Jovovic, Jan 01 2004: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*binomial(2*k+1, k+1).
E.g.f.: exp(x)*(BesselI(0, 2*x)+BesselI(2, 2*x)). (End)
From Paul Barry, Sep 17 2005: (Start)
G.f.: ((1-x)^2 - (1-x)*sqrt(1-2*x-3*x^2))/(2*x*sqrt(1-2*x-3*x^2)).
a(n+1) = Sum_{k=0..n} C(n, k)*C(k+1, k/2+1)*(1+(-1)^k)/2. (End)
D-finite with recurrence (n+1)*a(n) +(-3*n+1)*a(n-1) +(-n-5)*a(n-2) +3*(n-3)*a(n-3)=0. - R. J. Mathar, Nov 26 2012
a(n) ~ 3^(n-1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Feb 13 2014
Prepend 1 to the data, assume offset 0, and denote the resulting sequence alpha. Then alpha(n) = Sum_{k=0..n} Sum_{j=0..k} A359364(n, n - j). - Peter Luschny, Jan 10 2023

A359649 a(n) = hypergeom([(1 - n)/2, -n/2], [2], 4*n^2).

Original entry on oeis.org

1, 1, 5, 28, 609, 6501, 272701, 4286815, 272156417, 5648748355, 484054204501, 12482361156398, 1351553781736225, 41650209565275195, 5460281206077347469, 195722005810272604876, 30156361094764202326017, 1232550298298392183231275, 218366864894707599746619685
Offset: 0

Views

Author

Peter Luschny, Jan 10 2023

Keywords

Crossrefs

Cf. A359364.

Programs

  • Maple
    a := n -> hypergeom([(1 - n)/2, -n/2], [2], 4*n^2):
    seq(simplify(a(n)), n = 0..18);

Formula

a(n) = p(n, n), where p(n, x) = hypergeom([(1 - n)/2, -n/2], [2], (2*x)^2) are the Motzkin polynomials A359364.
a(n) ~ (exp(1) + (-1)^n) * 2^(n + 1/2) * n^(n - 3/2) / (sqrt(Pi) * exp(1/2)). - Vaclav Kotesovec, Jan 08 2024
Showing 1-3 of 3 results.