cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A352916 a(n) = A025179(n-2) + A102839(n-4), for n >= 4, with a(0) = a(2) = 0 and a(1) = a(3) = 1.

Original entry on oeis.org

0, 1, 0, 1, 1, 5, 13, 41, 121, 366, 1100, 3319, 10015, 30253, 91433, 276475, 836291, 2530321, 7657317, 23175867, 70150875, 212349687, 642803631, 1945819299, 5890003539, 17828324220, 53961228258, 163314594513, 494238394601, 1495593167851, 4525366817455
Offset: 0

Views

Author

Kassie Archer, Apr 26 2022

Keywords

Comments

a(n) + 2*A025565(n) is the number of Dyck paths of semilength n+2 with L(D) = 4 where L(D) is the product of binomial coefficients (u_i(D)+d_i(D) choose u_i(D)), where u_i(D) is the number of up-steps between the i-th and (i+1)-st down step and d_i(D) is the number of down-steps between the i-th and (i+1)-st up step.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, irem(n, 2),
         ((3*(n-4))*(n^4+6*n^3-41*n^2+18*n+76)*a(n-2)+
          (2*n^5+3*n^4-136*n^3+525*n^2-658*n+132)*a(n-1))/
          ((n^4+2*n^3-53*n^2+114*n+12)*(n-1)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 19 2022
  • Mathematica
    m[n_] := m[n] = If[n == 0, 1, m[n-1] + Sum[m[k]*m[n-2-k], {k, 0, n-2}]];
    a[n_] := Switch[n, 0|2, 0, 1|3|4, 1, _, m[n-3] + Binomial[n-3, 2]*m[n-5] + 2*Sum[(i+1)*m[i]*m[n-5-i], {i, 0, n-5}]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 26 2022 *)
  • PARI
    m(n) = polcoeff( ( 1 - x - sqrt((1 - x)^2 - 4 * x^2 + x^3 * O(x^n))) / (2 * x^2), n); \\ A001006
    a(n) = if (n<=3, n%2, m(n-3) + binomial(n-3,2)*m(n-5) + 2*sum(i=0, n-5, (i+1)*m(i)*m(n-5-i))); \\ Michel Marcus, May 19 2022

Formula

a(n) = m(n-3) + binomial(n-3,2)*m(n-5) + 2*Sum_{i=0..n-5} (i+1)*m(i)*m(n-5-i) for n>=3, where m(n) = A001006(n) is the n-th Motzkin number.
a(n) ~ sqrt(n) * 3^(n - 7/2) / (4*sqrt(Pi)). - Vaclav Kotesovec, Jun 03 2022
D-finite with recurrence (n-1)*(n-69)*a(n) +(n^2+221*n-513)*a(n-1) +(-37*n^2+356*n-312)*a(n-2) +(47*n^2-859*n+2820)*a(n-3) +12*(7*n-30)*(n-6)*a(n-4)=0. - R. J. Mathar, Jul 17 2023

A025177 Triangular array, read by rows: first differences in n,n direction of trinomial array A027907.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 2, 4, 4, 4, 2, 1, 1, 3, 7, 10, 12, 10, 7, 3, 1, 1, 4, 11, 20, 29, 32, 29, 20, 11, 4, 1, 1, 5, 16, 35, 60, 81, 90, 81, 60, 35, 16, 5, 1, 1, 6, 22, 56, 111, 176, 231, 252, 231, 176, 111, 56, 22, 6, 1, 1, 7, 29, 84, 189, 343, 518, 659, 714, 659, 518, 343
Offset: 0

Views

Author

Keywords

Comments

The Motzkin transforms of the rows starting (1, 2), (1, 3) and (1, 4), extended by zeros after their last element, are apparently in A026134, A026109 and A026110. - R. J. Mathar, Dec 11 2008

Examples

			               1
            1  0  1
         1  1  2  1  1
      1  2  4  4  4  2  1
   1  3  7 10 12 10  7  3  1
1  4 11 20 29 32 29 20 11  4  1
		

Crossrefs

Columns include A025178, A025179, A025180, A025181, A025182.
Cf. A024996, A025192 (row sums).

Programs

  • Maple
    A025177 := proc(n,k)
        option remember;
        if k < 0 or k > 2*n then
            0;
        elif n = 0 then
            1 ;
        elif n = 1 then
            op(k+1,[1,0,1]) ;
        else
            procname(n-1,k-2)+procname(n-1,k-1)+procname(n-1,k) ;
        end if;
    end proc:
    seq(seq(A025177(n,k),k=0..2*n),n=0..20)  ; # R. J. Mathar, Feb 25 2015
  • Mathematica
    nmax = 10; CoefficientList[CoefficientList[Series[(1 - y*x)/(1 - x*(1 + y + y^2)), {x, 0, nmax}, {y, 0, 2*nmax}], x], y] // Flatten (* G. C. Greubel, May 22 2017; amended by Georg Fischer, Jun 24 2020 *)
  • PARI
    {T(n, k) = if( k<0 || k>2*n, 0, if( n==0, 1, if( n==1, [1,0,1][k+1], if( n==2, [1,1,2,1,1][k+1], T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)))))};
    
  • PARI
    T(n,k)=polcoeff(Ser(polcoeff(Ser((1-y*z)/(1-z*(1+y+y^2)),y),k,y),z),n,z)
    
  • PARI
    {T(n, k) = if( k<0 || k>2*n, 0, if( n==0, 1, polcoeff( (1 + x + x^2)^n, k) - polcoeff( (1 + x + x^2)^(n-1), k-1)))};
    
  • PARI
    g=matrix(33,65);
    for(n=0,32,for(k=0,2*n,g[n+1,k+1]=0));
    g[1,1]=1;
    g[2,1]=1;g[2,2]=0;g[2,3]=1;
    g[3,1]=1;g[3,2]=1;g[3,3]=2;g[3,4]=1;g[3,5]=1;
    for(n=0,2,for(k=0,2*n,print(n," ",k," ",g[n+1,k+1])))
    for(n=3,32,g[n+1,1]=1;print(n," 1 1");g[n+1,2]=n-1;print(n," 2 ",n-1);for(k=2,2*n,g[n+1,k+1]=g[n,k-1]+g[n,k]+g[n,k+1];print(n," ",k," ",g[n+1,k+1])))
    \\ Michael B. Porter, Feb 02 2010

Formula

T(n, k) = T(n-1, k-2) + T(n-1, k-1) + T(n-1, k), starting with [1], [1, 0, 1].
G.f.: (1-y*z)/[1-z*(1+y+y^2)].

Extensions

Edited by Ralf Stephan, Jan 09 2005
Offset corrected by R. J. Mathar, Feb 25 2015

A024997 a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is an integer, s(0) = 0 = s(n), |s(i) - s(i-1)| = 1 for i = 1,2; |s(i) - s(i-1)| <= 1 for i >= 3. Also a(n) = T(n,n), where T is the array defined in A024996.

Original entry on oeis.org

2, 8, 20, 58, 162, 462, 1318, 3782, 10886, 31436, 91016, 264134, 768094, 2237640, 6529284, 19079574, 55826166, 163538472, 479588844, 1407813438, 4136307798, 12163015662, 35793391662, 105407889930, 310620540202, 915913267652, 2702265079208
Offset: 3

Views

Author

Keywords

Comments

Second differences of the central trinomial coefficients A002426. - T. D. Noe, Mar 16 2005

Crossrefs

Cf. A025179.

Programs

  • Mathematica
    Rest[Differences[CoefficientList[Series[1/Sqrt[(1 + x) (1 - 3 x)], {x, 0, 30}], x], 2]] (* Harvey P. Dale, May 11 2013 *)
    Table[2 Sum[Binomial[n, 2 k] Binomial[2 k + 1, k + 1], {k, 0, Floor[n/2]}],  {n, 1, 25}] (* G. C. Greubel, Mar 01 2017 *)
    Rest[Rest[CoefficientList[Series[((1 - x)^2 - (1 - x) Sqrt[1 - 2 x - 3 x^2])/(x Sqrt[1 - 2 x - 3 x^2]), {x, 0, 15}], x]]] (* G. C. Greubel, Mar 02 2017 *)
  • PARI
    x='x +O('x^50); Vec(((1-x)^2-(1-x +2*x^2)*sqrt(1-2*x-3*x^2)) /(x*sqrt(1 - 2*x -3*x^2))) \\ G. C. Greubel, Mar 01 2017

Formula

a(n) = 2*A025179(n-1).
From G. C. Greubel, Mar 01 2017: (Start)
a(n) = 2*Sum_{k=0..floor(n/2)} binomial(n, 2*k)*binomial(2*k+1, k+1), for n>=1.
O.g.f.: ((1-x)^2-(1-x+2*x^2)*sqrt(1-2*x-3*x^2)) / sqrt(1-2*x-3*x^2) [corrected by Charles R Greathouse IV, Mar 05 2017]
E.g.f.: 2*exp(x)*(BesselI(0, 2*x) + BesselI(2, 2*x)). (End)

A026135 Number of (s(0),s(1),...,s(n)) such that every s(i) is a nonnegative integer, s(0) = 1, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also sum of numbers in row n+1 of the array T defined in A026120.

Original entry on oeis.org

1, 2, 5, 14, 39, 110, 312, 890, 2550, 7334, 21161, 61226, 177575, 516114, 1502867, 4383462, 12804429, 37452870, 109682319, 321563658, 943701141, 2772060618, 8149661730, 23978203662, 70600640796, 208014215066, 613266903927
Offset: 0

Views

Author

Keywords

Comments

a(n) is the total number of rows of consecutive peaks in all Motzkin (n+2)-paths. For example, with U=upstep, D=downstep, F=flatstep, the path FU(UD)FU(UDUDUD)DD(UD) contains 3 rows of peaks (in parentheses). The 9 Motzkin 4-paths are FFFF, FF(UD), F(UD)F, FUFD, (UD)FF, (UDUD), UFDF, UFFD, U(UD)D, containing a total of 5 rows of peaks and so a(2)=5. - David Callan, Aug 16 2006

Crossrefs

First differences are in A025566, second differences in A005773.
Pairwise sums of A025179.

Programs

  • Mathematica
    CoefficientList[Series[((x - 1)^2*((1 + x)/(1 - 3 x))^(1/2) + x^2 - 1)/(2*x^2), {x,0,50}], x] (* G. C. Greubel, May 22 2017 *)
  • PARI
    x='x+O('x^50); Vec(((x-1)^2*((1+x)/(1-3x))^(1/2) + x^2 - 1)/(2*x^2)) \\ G. C. Greubel, May 22 2017

Formula

a(n) = Sum_{k=0..n} binomial(n-1, k-1)*binomial(k+1, floor((k+1)/2)). - Vladeta Jovovic, Sep 18 2003
G.f.: ((x-1)^2*((1+x)/(1-3x))^(1/2) + x^2 - 1)/(2*x^2). - David Callan, Aug 16 2006
G.f. = (1+z)*(1+z^2)/(1-z) where z=x*A001006(x). [From R. J. Mathar, Jul 07 2009]
Conjecture: (n+2)*a(n) +3*(-n-1)*a(n-1) +(-n-2)*a(n-2) +3*(n-3)*a(n-3)=0. - R. J. Mathar, Jun 23 2013

Extensions

More terms from David Callan, Aug 16 2006
Typo in a(19) corrected by R. J. Mathar, Jul 07 2009

A359364 Triangle read by rows. The Motzkin triangle, the coefficients of the Motzkin polynomials. M(n, k) = binomial(n, k) * CatalanNumber(k/2) if k is even, otherwise 0.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 6, 0, 2, 1, 0, 10, 0, 10, 0, 1, 0, 15, 0, 30, 0, 5, 1, 0, 21, 0, 70, 0, 35, 0, 1, 0, 28, 0, 140, 0, 140, 0, 14, 1, 0, 36, 0, 252, 0, 420, 0, 126, 0, 1, 0, 45, 0, 420, 0, 1050, 0, 630, 0, 42, 1, 0, 55, 0, 660, 0, 2310, 0, 2310, 0, 462, 0
Offset: 0

Views

Author

Peter Luschny, Jan 09 2023

Keywords

Comments

The generalized Motzkin numbers M(n, k) are a refinement of the Motzkin numbers M(n) (A001006) in the sense that they are coefficients of polynomials M(n, x) = Sum_{n..k} M(n, k) * x^k that take the value M(n) at x = 1. The coefficients of x^n are the aerated Catalan numbers A126120.
Variants are the irregular triangle A055151 with zeros deleted, A097610 with reversed rows, A107131 and A080159.
In the literature the name 'Motzkin triangle' is also used for the triangle A026300, which is generated from the powers of the generating function of the Motzkin numbers.

Examples

			Triangle M(n, k) starts:
[0] 1;
[1] 1, 0;
[2] 1, 0,  1;
[3] 1, 0,  3, 0;
[4] 1, 0,  6, 0,   2;
[5] 1, 0, 10, 0,  10, 0;
[6] 1, 0, 15, 0,  30, 0,   5;
[7] 1, 0, 21, 0,  70, 0,  35, 0;
[8] 1, 0, 28, 0, 140, 0, 140, 0,  14;
[9] 1, 0, 36, 0, 252, 0, 420, 0, 126, 0;
		

Crossrefs

Cf. A001006 (Motzkin numbers), A026300 (Motzkin gf. triangle), A126120 (aerated Catalan), A000108 (Catalan).

Programs

  • Maple
    CatalanNumber := n -> binomial(2*n, n)/(n + 1):
    M := (n, k) -> ifelse(irem(k, 2) = 1, 0, CatalanNumber(k/2)*binomial(n, k)):
    for n from 0 to 9 do seq(M(n, k), k = 0..n) od;
    # Alternative, as coefficients of polynomials:
    p := n -> hypergeom([(1 - n)/2, -n/2], [2], (2*x)^2):
    seq(print(seq(coeff(simplify(p(n)), x, k), k = 0..n)), n = 0..9);
    # Using the exponential generating function:
    egf := exp(x)*BesselI(1, 2*x*t)/(x*t): ser:= series(egf, x, 11):
    seq(print(seq(coeff(simplify(n!*coeff(ser, x, n)), t, k), k = 0..n)), n = 0..9);
  • Python
    from functools import cache
    @cache
    def M(n: int, k: int) -> int:
        if k %  2: return 0
        if n <  3: return 1
        if n == k: return (2 * (n - 1) * M(n - 2, n - 2)) // (n // 2 + 1)
        return (M(n - 1, k) * n) // (n - k)
    for n in range(10): print([M(n, k) for k in range(n + 1)])

Formula

Let p(n, x) = hypergeom([(1 - n)/2, -n/2], [2], (2*x)^2).
p(n, 1) = A001006(n); p(n, sqrt(2)) = A025235(n); p(n, 2) = A091147(n).
p(2, n) = A002522(n); p(3, n) = A056107(n).
p(n, n) = A359649(n); 2^n*p(n, 1/2) = A000108(n+1).
M(n, k) = [x^k] p(n, x).
M(n, k) = [t^k] (n! * [x^n] exp(x) * BesselI(1, 2*t*x) / (t*x)).
M(n, k) = [t^k][x^n] ((1 - x - sqrt((x-1)^2 - (2*t*x)^2)) / (2*(t*x)^2)).
M(n, n) = A126120(n).
M(n, n-1) = A138364(n), the number of Motzkin n-paths with exactly one flat step.
M(2*n, 2*n) = A000108(n), the number of peakless Motzkin paths having a total of n up and level steps.
M(4*n, 2*n) = A359647(n), the central terms without zeros.
M(2*n+2, 2*n) = A002457(n) = (-4)^n * binomial(-3/2, n).
Sum_{k=0..n} M(n - k, k) = A023426(n).
Sum_{k=0..n} k * M(n, k) = 2*A014531(n-1) = 2*GegenbauerC(n - 2, -n, -1/2).
Sum_{k=0..n} i^k*M(n, k) = A343773(n), (i the imaginary unit), is the excess of the number of even Motzkin n-paths (A107587) over the odd ones (A343386).
Sum_{k=0..n} Sum_{j=0..k} M(n, j) = A189912(n).
Sum_{k=0..n} Sum_{j=0..k} M(n, n-j) = modified A025179(n).
For a recursion see the Python program.

A026079 a(n) = Sum_{k = 1..n} T(k,k-1), where T is the array defined in A024996.

Original entry on oeis.org

1, 3, 6, 12, 31, 83, 233, 661, 1893, 5445, 15720, 45510, 132069, 384049, 1118822, 3264644, 9539789, 27913085, 81769238, 239794424, 703906721, 2068153901, 6081507833, 17896695833, 52703944967, 155310270103, 457956633828, 1351132539606, 3988457429607
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025179.

Programs

  • Mathematica
    Join[{1, 3}, Table[Sum[ Binomial[n, 2*k]*Binomial[2*k + 1, k + 1], {k, 0, Floor[n/2]}] + 2, {n,2,50}]] (* G. C. Greubel, May 22 2017 *)
  • PARI
    concat([1,3], for(n=2,50, print1(2 + sum(k=0,floor(n/2), binomial(n, 2*k)*binomial(2*k+1, k+1)), ", "))) \\ G. C. Greubel, May 22 2017

Formula

a(n) = A025179(n) + 2, n>2.
Showing 1-6 of 6 results.