A382574 a(n) is the number of shallow permutations of length n that avoid 123.
1, 1, 2, 5, 13, 35, 90, 225, 525, 1181, 2526, 5289, 10729, 21583, 42566, 83909, 163225, 318713, 616122, 1198029, 2309829, 4483643, 8635314, 16750761, 32247973, 62538517, 120378518, 233428337, 449294497, 871206887, 1676835486, 3251439501, 6258092337, 12134600945
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..3494
- Kassie Archer, Aaron Geary, and Robert Laudone, Pattern-avoiding shallow permutations, arXiV:2412.11999 [math.CO], 2024.
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-12,22,-12,-2,4,-1).
Programs
-
Mathematica
CoefficientList[Series[(1 - 3*x + 11*x^3 - 13*x^4 + 7*x^5 + 6*x^6 + 3*x^7)/((1 - x)^4*(1 - 4*x^2 + x^4)), {x, 0, 33}], x] (* Michael De Vlieger, Apr 01 2025 *)
Formula
G.f.: (1-3*x+11*x^3-13*x^4+7*x^5+6*x^6+3*x^7) / ((1-x)^4 * (1-4*x^2+x^4)).
Comments