cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A025179 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 1. Also a(n) = T(n,n-1), where T is the array defined in A025177.

Original entry on oeis.org

1, 4, 10, 29, 81, 231, 659, 1891, 5443, 15718, 45508, 132067, 384047, 1118820, 3264642, 9539787, 27913083, 81769236, 239794422, 703906719, 2068153899, 6081507831, 17896695831, 52703944965, 155310270101, 457956633826, 1351132539604
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[Rest[CoefficientList[Series[((1-x)^2-(1-x)*Sqrt[1-2*x-3*x^2]) /(2*x*Sqrt[1-2*x-3*x^2]), {x, 0, 20}], x]]] (* Vaclav Kotesovec, Feb 13 2014 *)
  • PARI
    my(x='x+O('x^50)); Vec(((1-x)^2-(1-x +2*x^2)*sqrt(1-2*x-3*x^2)) /(2*x*sqrt(1 - 2*x -3*x^2))) \\ G. C. Greubel, Mar 01 2017

Formula

Equals (1/2) * A024997(n+1).
From Vladeta Jovovic, Jan 01 2004: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*binomial(2*k+1, k+1).
E.g.f.: exp(x)*(BesselI(0, 2*x)+BesselI(2, 2*x)). (End)
From Paul Barry, Sep 17 2005: (Start)
G.f.: ((1-x)^2 - (1-x)*sqrt(1-2*x-3*x^2))/(2*x*sqrt(1-2*x-3*x^2)).
a(n+1) = Sum_{k=0..n} C(n, k)*C(k+1, k/2+1)*(1+(-1)^k)/2. (End)
D-finite with recurrence (n+1)*a(n) +(-3*n+1)*a(n-1) +(-n-5)*a(n-2) +3*(n-3)*a(n-3)=0. - R. J. Mathar, Nov 26 2012
a(n) ~ 3^(n-1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Feb 13 2014
Prepend 1 to the data, assume offset 0, and denote the resulting sequence alpha. Then alpha(n) = Sum_{k=0..n} Sum_{j=0..k} A359364(n, n - j). - Peter Luschny, Jan 10 2023

A027261 a(n) = Sum_{k=0..2n} (k+1) * A025177(n, k).

Original entry on oeis.org

1, 4, 18, 72, 270, 972, 3402, 11664, 39366, 131220, 433026, 1417176, 4605822, 14880348, 47829690, 153055008, 487862838, 1549681956, 4907326194, 15496819560, 48814981614, 153418513644, 481176247338, 1506290861232, 4707158941350, 14686335897012, 45753584909922
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

a(n) = 2(n+1)*3^(n-1), for n>1 (conjectured). - Ralf Stephan, Feb 02 2004
From Colin Barker, Jul 28 2012: (Start)
Conjecture: a(n) = 6*a(n-1)-9*a(n-2), for n>3.
G.f.: (1-9*x^2+18*x^3)/(1-3*x)^2. (End)

Extensions

a(1) corrected and more terms from Sean A. Irvine, Oct 26 2019

A025181 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 3. Also a(n) = T(n,n-3), where T is the array defined in A025177.

Original entry on oeis.org

1, 3, 11, 35, 111, 343, 1050, 3186, 9615, 28897, 86592, 258908, 772863, 2304225, 6863496, 20429784, 60779403, 180751617, 537386595, 1597372371, 4747537641, 14108988509, 41928203694, 124598731750, 370279082745, 1100428538391, 3270534249843
Offset: 3

Views

Author

Keywords

Crossrefs

Cf. A025568.
First differences of A014532. First differences are in A026070.

Formula

Conjecture: +(n+3)*a(n) +(-5*n-7)*a(n-1) +(3*n-7)*a(n-2) +(11*n-7)*a(n-3) +4*(-n+6)*a(n-4) +6*(-n+5)*a(n-5)=0. - R. J. Mathar, Feb 25 2015
Conjecture: -(n+3)*(n-3)*(4*n^2-12*n+17)*a(n) +(n-1)*(8*n^3-20*n^2+30*n-81)*a(n-1) +3*(n-1)*(n-2)*(4*n^2-4*n+9)*a(n-2)=0. - R. J. Mathar, Feb 25 2015

A025180 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 2. Also a(n) = T(n,n-2), where T is the array defined in A025177.

Original entry on oeis.org

1, 2, 7, 20, 60, 176, 518, 1520, 4461, 13090, 38423, 112828, 331487, 974442, 2866125, 8434992, 24838275, 73181142, 215729781, 636275820, 1877569134, 5543095404, 16372140876, 48377825216, 143009973875, 422918975726, 1251154692297
Offset: 2

Views

Author

Keywords

Crossrefs

First differences of A014531. First differences are in A026069.

Formula

Conjecture: -(n+2)*(n-3)*a(n) +2*(2*n+1)*(n-3)*a(n-1) +(-n^2+10*n-18)*a(n-2) -3*(2*n-3)*(n-3)*a(n-3)=0. - R. J. Mathar, Feb 25 2015

A025182 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is an integer, s(0) = 0, |s(1)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2, s(n) = 4. Also a(n) = T(n,n-4), where T is the array defined in A025177.

Original entry on oeis.org

1, 4, 16, 56, 189, 616, 1968, 6192, 19272, 59488, 182468, 556920, 1693146, 5131296, 15511344, 46791072, 140905197, 423709956, 1272596136, 3818355464, 11447074309, 34292702840, 102670377120, 307230479920, 918951019155, 2747624937876
Offset: 4

Views

Author

Keywords

Comments

Apparently first differences of A014533.

Crossrefs

Formula

Conjecture: -(n-4)*(n+4)*a(n) +(4*n^2-7*n-29)*a(n-1) +(-2*n^2+17*n-2)*a(n-2) -(4*n+1)*(n-3)*a(n-3) +3*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Feb 25 2015
Conjecture: -(n-4)*(n+4)*(n^2-3*n+6)*a(n) +(n-1)*(2*n^3-5*n^2+11*n-36)*a(n-1) +3*(n-1)*(n-2)*(n^2-n+4)*a(n-2)=0. - R. J. Mathar, Feb 25 2015

A025191 a(n) = Sum_{k=0..n} T(n,k), where T is the array defined in A025177.

Original entry on oeis.org

1, 1, 4, 11, 33, 97, 288, 855, 2544, 7577, 22590, 67399, 201215, 601017, 1795966, 5368659, 16053417, 48015873, 143649102, 429842511, 1286452725, 3850770081, 11528245602, 34517105907, 103360732956, 309543786441, 927106804368, 2776994293355
Offset: 0

Views

Author

Keywords

Comments

Conjectures: a(n) = A027914(n)-A027914(n-1) = (A081673(n)-A081673(n-1))/2.

Extensions

a(1) corrected by Jason Yuen, Aug 05 2024

A025183 a(n) = T(2n-1,n), where T is the array defined in A025177.

Original entry on oeis.org

0, 4, 20, 111, 616, 3465, 19668, 112476, 647088, 3741156, 21718520, 126520240, 739225704, 4330188265, 25421864580, 149541718275, 881200519200, 5200715525016, 30736780735752, 181886951796886
Offset: 1

Views

Author

Keywords

Programs

Formula

Conjecture: 9*n*(10833*n-26779)*(3*n-4)*(3*n-2)*a(n) -3*(n-1)*(749757*n^3+5096
41*n^2-11324756*n+13648560)*a(n-1) -2*(2*n-5)*(4152209*n^3-25903434*n^2+5658913
6*n-40818816)*a(n-2) -36*(n-3)*(85207*n-129510)*(2*n-5)*(2*n-7)*a(n-3)=0. - R. J. Mathar, Feb 25 2015

Extensions

First term corrected. - R. J. Mathar, Feb 25 2015

A025184 a(n) = T(2n,n), where T is the array defined in A025177.

Original entry on oeis.org

1, 1, 7, 35, 189, 1038, 5797, 32747, 186615, 1070762, 6177698, 35802935, 208279007, 1215507450, 7113090285, 41724381765, 245258504925, 1444292029818, 8519114704870, 50323176446818, 297654524450998
Offset: 0

Views

Author

Keywords

Programs

Formula

a(n) = (2*(3*n+2)*(3*n+1)*A006605(n)-(19*n+4)*(2*n-1)*A006605(n-1))/(13*n+4) for n>0. [Mark van Hoeij, Jul 02 2010]
Conjecture: 33*n*(3*n-1)*(3*n-2)*a(n) +11*(2047*n^3-10725*n^2+17192*n-8520)*a(n-1) +9*(-4397*n^3-10169*n^2+110500*n-145368)*a(n-2) -54*(2*n-5)*(5353*n^2-33313*n+53904)*a(n-3) -115668*(2*n-5)*(2*n-7)*(n-4)*a(n-4)=0. - R. J. Mathar, Feb 25 2015

A025185 a(n) = T(3n,n), where T is the array defined in A025177.

Original entry on oeis.org

1, 2, 16, 120, 946, 7644, 62832, 522804, 4390056, 37126830, 315770676, 2698179488, 23144461368, 199177780102, 1718891656176, 14869867516812, 128909380154562, 1119623594699610, 9740452802251080, 84865206568065000, 740387260555434996, 6467129226550164474
Offset: 0

Views

Author

Keywords

Programs

A025186 T(4n,n), where T is the array defined in A025177.

Original entry on oeis.org

1, 3, 29, 286, 2955, 31350, 338514, 3701295, 40849661, 454114540, 5077463898, 57038882004, 643269405230, 7278603015180, 82590333059025, 939444489263403, 10708773485661387, 122299562702918348, 1399055759185079316
Offset: 0

Views

Author

Keywords

Programs

Showing 1-10 of 22 results. Next