A334778
Triangle read by rows: T(n,k) is the number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly k local maxima.
Original entry on oeis.org
1, 0, 1, 0, 4, 2, 0, 18, 66, 6, 0, 72, 1168, 1192, 88, 0, 270, 16220, 61830, 33600, 1480, 0, 972, 202416, 2150688, 3821760, 1268292, 40272, 0, 3402, 2395540, 62178928, 272509552, 279561086, 62954948, 1476944, 0, 11664, 27517568, 1629254640, 15313310208, 36381368048, 24342647424, 3963672720, 71865728
Offset: 0
Triangle begins:
1;
0, 1;
0, 4, 2;
0, 18, 66, 6;
0, 72, 1168, 1192, 88;
0, 270, 16220, 61830, 33600, 1480;
0, 972, 202416, 2150688, 3821760, 1268292, 40272;
0, 3402, 2395540, 62178928, 272509552, 279561086, 62954948, 1476944;
...
The T(2,1) = 4 permutations of 1122 with 1 local maximum are 1122, 1221, 2112, 2211.
The T(2,2) = 2 permutations of 1122 with 2 local maxima are 1212, 2121.
The version for permutations of 1..n is
A263789.
-
CircPeaksBySig(sig, D)={
my(F(lev,p,q) = my(key=[lev,p,q], z); if(!mapisdefined(FC, key, &z),
my(m=sig[lev]); z = if(lev==1, if(p==0, binomial(m-1, q), 0), sum(i=0, p, sum(j=0, min(m-i, q), self()(lev-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) )));
mapput(FC, key, z)); z);
local(FC=Map());
vector(#D, i, my(k=D[i], lev=#sig); if(lev==1, k==1, my(m=sig[lev]); lev*sum(j=1, min(m,k), m*binomial(m-1,j-1)*F(lev-1,k-j,j-1)/j)));
}
Row(n)={ if(n==0, [1], CircPeaksBySig(vector(n,i,2), [0..n])) }
{ for(n=0, 8, print(Row(n))) }
A014915
a(1)=1, a(n) = n*3^(n-1) + a(n-1).
Original entry on oeis.org
1, 7, 34, 142, 547, 2005, 7108, 24604, 83653, 280483, 930022, 3055786, 9964519, 32285041, 104029576, 333612088, 1065406345, 3389929279, 10750918570, 33996147910, 107218620331, 337346390797, 1059110761804, 3318547053652, 10379285465677, 32408789311195, 101039166676078
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..600
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See p. 14.
- Alexander V. Kitaev, Meromorphic Solution of the Degenerate Third Painlevé Equation Vanishing at the Origin, arXiv:1809.00122 [math.CA], 2018.
- Index entries for linear recurrences with constant coefficients, signature (7,-15,9).
A064017
Number of ternary trees (A001764) with n nodes and maximal diameter.
Original entry on oeis.org
1, 3, 12, 45, 162, 567, 1944, 6561, 21870, 72171, 236196, 767637, 2480058, 7971615, 25509168, 81310473, 258280326, 817887699, 2582803260, 8135830269, 25569752274, 80196041223, 251048476872, 784526490225, 2447722649502
Offset: 1
Danail Bonchev (bonchevd(AT)aol.com), Sep 07 2001
a(5) = 162 because we can write (5+1)*3^(5-2) = 6*3^3 = 6*27.
-
a:=n->ceil(sum(3^(n-2),j=0..n)): seq(a(n), n=1..26); # Zerinvary Lajos, Jun 05 2008
-
Join[{1},Table[(n+1)3^(n-2),{n,2,30}]] (* or *) Join[{1}, LinearRecurrence[ {6,-9},{3,12},30]] (* Harvey P. Dale, Feb 07 2012 *)
-
{ for (n=1, 200, if (n>1, a=(n + 1)*p; p*=3, a=p=1); write("b064017.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 06 2009
-
a(n)=if(n==1, 1, (n+1)*3^(n-2)); \\ Joerg Arndt, May 06 2013
-
@CachedFunction
def BB(n, k, x): # modified cardinal B-splines
if n == 1: return 0 if (x < 0) or (x >= k) else 1
return x*BB(n-1, k, x) + (n*k-x)*BB(n-1, k, x-k)
def EulerianPolynomial(n, k, x):
if n == 0: return 1
return add(BB(n+1, k, k*m+1)*x^m for m in (0..n))
def A064017(n) : return 3^(n-1)*EulerianPolynomial(1,n-1,1/3) if n != 1 else 1
[A064017(n) for n in (1..25)] # Peter Luschny, May 04 2013
A159715
Number of permutations of 2 indistinguishable copies of 1..n arranged in a circle with exactly 1 local maximum.
Original entry on oeis.org
4, 18, 72, 270, 972, 3402, 11664, 39366, 131220, 433026, 1417176, 4605822, 14880348, 47829690, 153055008, 487862838, 1549681956, 4907326194, 15496819560, 48814981614, 153418513644, 481176247338, 1506290861232, 4707158941350
Offset: 2
-
[2*n*3^(n-2): n in [2..30]]; // G. C. Greubel, Jun 01 2018
-
LinearRecurrence[{6,-9}, {}, 30] (* or *) Table[2*n*3^(n-2), {n, 2, 30}] (* G. C. Greubel, Jun 01 2018 *)
-
for(n=2, 30, print1(2*n*3^(n-2), ", ")) \\ G. C. Greubel, Jun 01 2018
A079272
a(n) = ((2n+1)*3^n - 1)/2.
Original entry on oeis.org
4, 22, 94, 364, 1336, 4738, 16402, 55768, 186988, 620014, 2037190, 6643012, 21523360, 69353050, 222408058, 710270896, 2259952852, 7167279046, 22664098606, 71479080220, 224897593864, 706073841202, 2212364702434, 6919523643784, 21605859540796, 67359444450718
Offset: 1
For instance, the 4 fragmented chains of original length a(4) = 364 into
.
1 + 9 + 1
+ +
243 27
+ +
1 + 81 + 1
.
when swapped with identical fragments owned by the creditor, enable the sequential payment, a link-cost at a time, for an expense up to 364 link-costs.
-
[((2*n+1)*3^n - 1)/2: n in [1..25]]; // Vincenzo Librandi, Jul 07 2018
-
a:=n->sum (3^j*n^binomial(j,n),j=0..n): seq(a(n),n=1..25); # Zerinvary Lajos, Apr 18 2009
-
Rest@ CoefficientList[Series[2x(2-3x)/((1-x)(1-3x)^2), {x, 0, 25}], x] (* Michael De Vlieger, Jul 06 2018 *)
-
vector(25, n, ((2*n+1)*3^n - 1)/2) \\ G. C. Greubel, Apr 14 2019
-
[((2*n+1)*3^n - 1)/2 for n in (1..25)] # G. C. Greubel, Apr 14 2019
Showing 1-5 of 5 results.
Comments