A000337
a(n) = (n-1)*2^n + 1.
Original entry on oeis.org
0, 1, 5, 17, 49, 129, 321, 769, 1793, 4097, 9217, 20481, 45057, 98305, 212993, 458753, 983041, 2097153, 4456449, 9437185, 19922945, 41943041, 88080385, 184549377, 385875969, 805306369, 1677721601, 3489660929, 7247757313, 15032385537, 31138512897, 64424509441
Offset: 0
- F. Harary, Topological concepts in graph theory, pp. 13-17 of F. Harary and L. Beineke, editors, A seminar on Graph Theory, Holt, Rinehart and Winston, New York, 1967.
- V. G. Gutierrez and S. L. de Medrano, Surfaces as complete intersections, in Riemann and Klein Surfaces, Automorphisms, Symmetries and Moduli Spaces, edited by Milagros Izquierdo, S. Allen Broughton, Antonio F. Costa, Contemp. Math. vol. 629, 2014, pp. 171-.
- F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 119.
- G. H. Hardy, A Theorem Concerning the Infinite Cardinal Numbers, Quart. J. Math., 35 (1904), p. 90 = Collected Papers of G. H. Hardy, Vol. VII, p. 430.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Indranil Ghosh, Table of n, a(n) for n = 0..1000 (first 301 terms from T. D. Noe)
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See p. 14.
- H. H. Bauschke and R. M. Corless, Analyzing a Projection Method with Maple, MapleTech Journal, 4:1 (1997), 2-7.
- L. W. Beineke and F. Harary, The genus of the n-cube, Canad. J. Math., 17 (1965), 494-496.
- Ulrich Brehm and Egon Schulte, Polyhedral Maps. [_Jonathan Vos Post_, Jul 25 2009]
- Harry Crane, Left-right arrangements, set partitions, and pattern avoidance, Australasian Journal of Combinatorics, 61(1) (2015), 57-72.
- Pedro Fernando Fernández Espinosa and Agustín Moreno Cañadas, Homological Ideals as Integer Specializations of Some Brauer Configuration Algebras, arXiv:2104.00050 [math.RT], 2021.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 23.
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
- Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1505.07229v3 [math.AG], 2015. [A later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication below.]
- Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1610.07793 [math.NT], 2016.
- Han Mao Kiah, Alexander Vardy, and Hanwen Yao, Computing Permanents on a Trellis, arXiv:2107.07377 [cs.IT], 2021.
- S. Kitaev, J. Remmel, and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243 [math.CO], 2012.
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 2015, #A16. (arXiv, arXiv:1302.2274 [math.CO], 2013)
- Santiago López de Medrano, On the genera of moment-angle manifolds associated to dual-neighborly polytopes, combinatorial formulas and sequences, arXiv:2003.07508 [math.GT], 2020.
- César Eliud Lozada, Centroids of Pascal triangles
- P. McMullen, Ch. Schulz and J.M. Wills, Polyhedral manifolds in E^3 with unusually large genus, Israel J. Math. 46:127-144, 1983. [From _Jonathan Vos Post_, Jul 25 2009]
- Toufik Mansour, Restricted permutations by patterns of type (2,1), arXiv:math/0202219 [math.CO], 2002.
- Michael Penn, An awesome number theory contest problem, YouTube video, 2022.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Len Smiley, Hardy's algorithm.
- Nsibiet E. Udo, Praise Adeyemo, Balazs Szendroi, and Stavros Argyrios Papadakis, Ideals, representations and a symmetrised Bernoulli triangle, arXiv:2409.10278 [math.AC], 2024. See pp. 2,4,8.
- Eric Weisstein's World of Mathematics, Graph Genus.
- Eric Weisstein's World of Mathematics, Hypercube Graph.
- A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
- Index entries for linear recurrences with constant coefficients, signature (5,-8,4).
-
List([0..30],n->(n-1)*2^n+1); # Muniru A Asiru, Oct 24 2018
-
[(n-1)*2^n + 1: n in [0..40]]; // Vincenzo Librandi, Nov 21 2014
-
A000337 := proc(n) 1+(n-1)*2^n ; end proc: # R. J. Mathar, Oct 10 2011
-
Table[Sum[(-1)^(n - k) k (-1)^(n - k) Binomial[n + 1, k + 1], {k, 0, n}], {n, 0, 28}] (* Zerinvary Lajos, Jul 08 2009 *)
Table[(n - 1) 2^n + 1, {n, 0, 40}] (* Harvey P. Dale, Jun 21 2011 *)
LinearRecurrence[{5, -8, 4}, {0, 1, 5}, 40] (* Harvey P. Dale, Jun 21 2011 *)
CoefficientList[Series[x / ((1 - x) (1 - 2 x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 21 2014 *)
-
a(n)=if(n<0,0,(n-1)*2^n+1)
-
a=lambda n:((n-1)<<(n))+1 # Indranil Ghosh, Jan 05 2017
A000340
a(0)=1, a(n) = 3*a(n-1) + n + 1.
Original entry on oeis.org
1, 5, 18, 58, 179, 543, 1636, 4916, 14757, 44281, 132854, 398574, 1195735, 3587219, 10761672, 32285032, 96855113, 290565357, 871696090, 2615088290, 7845264891, 23535794695, 70607384108, 211822152348, 635466457069
Offset: 0
G.f. = 1 + 5*x + 18*x^2 + 58*x^3 + 179*x^4 + 543*x^5 + 1636*x^6 + ...
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See pp. 9, 18.
- Shaoshi Chen, Hanqian Fang, Sergey Kitaev, and Candice X.T. Zhang, Patterns in Multi-dimensional Permutations, arXiv:2411.02897 [math.CO], 2024. See p. 7.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 389
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- László Tóth, On Schizophrenic Patterns in b-ary Expansions of Some Irrational Numbers, arXiv:2002.06584 [math.NT], 2020. Mentions this sequence. See also Proc. Amer. Math. Soc. 148 (2020), 461-469.
- Index entries for linear recurrences with constant coefficients, signature (5,-7,3).
Equals
A156920 second right hand column.
Equals
A142963 second right hand column divided by 2^n.
Equals
A156919 second right hand column divided by 2.
(End)
-
[(3^(n+2)-2*n-5)/4: n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
-
a[ -1]:=0:a[0]:=1:for n from 1 to 50 do a[n]:=4*a[n-1]-3*a[n-2]+1 od: seq(a[n],n=0..50); # Miklos Kristof, Mar 09 2005
A000340:=-1/(3*z-1)/(z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
-
a[ n_] := MatrixPower[ {{1, 0, 0}, {1, 1, 0}, {1, 1, 3}}, n + 1][[3, 1]]; (* Michael Somos, May 28 2014 *)
RecurrenceTable[{a[0]==1,a[n]==3a[n-1]+n+1},a,{n,30}] (* or *) LinearRecurrence[{5,-7,3},{1,5,18},30] (* Harvey P. Dale, Jan 31 2017 *)
A193842
Triangular array: the fission of the polynomial sequence ((x+1)^n: n >= 0) by the polynomial sequence ((x+2)^n: n >= 0). (Fission is defined at Comments.)
Original entry on oeis.org
1, 1, 4, 1, 7, 13, 1, 10, 34, 40, 1, 13, 64, 142, 121, 1, 16, 103, 334, 547, 364, 1, 19, 151, 643, 1549, 2005, 1093, 1, 22, 208, 1096, 3478, 6652, 7108, 3280, 1, 25, 274, 1720, 6766, 17086, 27064, 24604, 9841, 1, 28, 349, 2542, 11926, 37384, 78322, 105796
Offset: 0
First six rows, for 0 <= k <= n and 0 <= n <= 5:
1
1...4
1...7....13
1...10...34....40
1...13...64....142...121
1...16...103...334...547...364
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Digital Library of Mathematical Functions, Hypergeometric function, analytic properties.
- Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52(3) (2014), 195-202.
-
[ (&+[3^(k-j)*Binomial(n-j,k-j): j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
-
fission := proc(p, q, n) local d, k;
p(n+1,0)*q(n,x)+add(coeff(p(n+1,x),x^k)*q(n-k,x), k=1..n);
seq(coeff(%,x,n-k), k=0..n) end:
A193842_row := n -> fission((n,x) -> (x+1)^n, (n,x) -> (x+2)^n, n);
for n from 0 to 5 do A193842_row(n) od; # Peter Luschny, Jul 23 2014
# Alternatively:
p := (n,x) -> add(x^k*(1+3*x)^(n-k),k=0..n): for n from 0 to 7 do [n], PolynomialTools:-CoefficientList(p(n,x), x) od; # Peter Luschny, Jun 18 2017
-
(* First program *)
z = 10;
p[n_, x_] := (x + 1)^n;
q[n_, x_] := (x + 2)^n
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193842 *)
TableForm[Table[h[n], {n, 0, z}]] (* A193843 *)
Flatten[Table[h[n], {n, -1, z}]]
(* Second program *)
Table[SeriesCoefficient[((x+3)^(n+1) -1)/(x+2), {x,0,n-k}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
-
T(n,k) = sum(j=0,k, 3^(k-j)*binomial(n-j,k-j)); \\ G. C. Greubel, Feb 18 2020
-
from mpmath import mp, hyp2f1
mp.dps = 100; mp.pretty = True
def T(n,k):
return 3^k*binomial(n,k)*hyp2f1(1,-k,-n,1/3)-0^(n-k)//2
for n in range(7):
print([int(T(n,k)) for k in (0..n)]) # Peter Luschny, Jul 23 2014
-
# Second program using the 'fission' operation.
def fission(p, q, n):
F = p(n+1,0)*q(n,x)+add(expand(p(n+1,x)).coefficient(x,k)*q(n-k,x) for k in (1..n))
return [expand(F).coefficient(x,n-k) for k in (0..n)]
A193842_row = lambda k: fission(lambda n,x: (x+1)^n, lambda n,x: (x+2)^n, k)
for n in range(7): A193842_row(n) # Peter Luschny, Jul 23 2014
A064017
Number of ternary trees (A001764) with n nodes and maximal diameter.
Original entry on oeis.org
1, 3, 12, 45, 162, 567, 1944, 6561, 21870, 72171, 236196, 767637, 2480058, 7971615, 25509168, 81310473, 258280326, 817887699, 2582803260, 8135830269, 25569752274, 80196041223, 251048476872, 784526490225, 2447722649502
Offset: 1
Danail Bonchev (bonchevd(AT)aol.com), Sep 07 2001
a(5) = 162 because we can write (5+1)*3^(5-2) = 6*3^3 = 6*27.
-
a:=n->ceil(sum(3^(n-2),j=0..n)): seq(a(n), n=1..26); # Zerinvary Lajos, Jun 05 2008
-
Join[{1},Table[(n+1)3^(n-2),{n,2,30}]] (* or *) Join[{1}, LinearRecurrence[ {6,-9},{3,12},30]] (* Harvey P. Dale, Feb 07 2012 *)
-
{ for (n=1, 200, if (n>1, a=(n + 1)*p; p*=3, a=p=1); write("b064017.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 06 2009
-
a(n)=if(n==1, 1, (n+1)*3^(n-2)); \\ Joerg Arndt, May 06 2013
-
@CachedFunction
def BB(n, k, x): # modified cardinal B-splines
if n == 1: return 0 if (x < 0) or (x >= k) else 1
return x*BB(n-1, k, x) + (n*k-x)*BB(n-1, k, x-k)
def EulerianPolynomial(n, k, x):
if n == 0: return 1
return add(BB(n+1, k, k*m+1)*x^m for m in (0..n))
def A064017(n) : return 3^(n-1)*EulerianPolynomial(1,n-1,1/3) if n != 1 else 1
[A064017(n) for n in (1..25)] # Peter Luschny, May 04 2013
A027261
a(n) = Sum_{k=0..2n} (k+1) * A025177(n, k).
Original entry on oeis.org
1, 4, 18, 72, 270, 972, 3402, 11664, 39366, 131220, 433026, 1417176, 4605822, 14880348, 47829690, 153055008, 487862838, 1549681956, 4907326194, 15496819560, 48814981614, 153418513644, 481176247338, 1506290861232, 4707158941350, 14686335897012, 45753584909922
Offset: 0
A014917
a(1)=1, a(n) = n*5^(n-1) + a(n-1).
Original entry on oeis.org
1, 11, 86, 586, 3711, 22461, 131836, 756836, 4272461, 23803711, 131225586, 717163086, 3890991211, 20980834961, 112533569336, 600814819336, 3194808959961, 16927719116211, 89406967163086, 470876693725586, 2473592758178711, 12964010238647461, 67800283432006836, 353902578353881836
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See p. 16.
- Index entries for linear recurrences with constant coefficients, signature (11,-35,25).
-
I:=[1, 11]; [n le 2 select I[n] else 10*Self(n-1)-25*Self(n-2)+ 1: n in [1..30]]; // Vincenzo Librandi, Oct 23 2012
-
CoefficientList[Series[1/((1 - x)(1 - 5 x)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 23 2012 *)
LinearRecurrence[{11,-35,25},{1,11,86},20] (* Harvey P. Dale, May 06 2013 *)
A059045
Square array T(n,k) read by antidiagonals where T(0,k) = 0 and T(n,k) = 1 + 2k + 3k^2 + ... + n*k^(n-1).
Original entry on oeis.org
0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 17, 7, 1, 0, 1, 15, 49, 34, 9, 1, 0, 1, 21, 129, 142, 57, 11, 1, 0, 1, 28, 321, 547, 313, 86, 13, 1, 0, 1, 36, 769, 2005, 1593, 586, 121, 15, 1, 0, 1, 45, 1793, 7108, 7737, 3711, 985, 162, 17, 1, 0, 1, 55, 4097, 24604, 36409
Offset: 0
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, 15, 17, ...
1, 6, 17, 34, 57, 86, 121, 162, 209, ...
1, 10, 49, 142, 313, 586, 985, 1534, 2257, ...
1, 15, 129, 547, 1593, 3711, 7465, 13539, 22737, ...
1, 21, 321, 2005, 7737, 22461, 54121, 114381, 219345, ...
1, 28, 769, 7108, 36409, 131836, 380713, 937924, 2054353, ...
A079272
a(n) = ((2n+1)*3^n - 1)/2.
Original entry on oeis.org
4, 22, 94, 364, 1336, 4738, 16402, 55768, 186988, 620014, 2037190, 6643012, 21523360, 69353050, 222408058, 710270896, 2259952852, 7167279046, 22664098606, 71479080220, 224897593864, 706073841202, 2212364702434, 6919523643784, 21605859540796, 67359444450718
Offset: 1
For instance, the 4 fragmented chains of original length a(4) = 364 into
.
1 + 9 + 1
+ +
243 27
+ +
1 + 81 + 1
.
when swapped with identical fragments owned by the creditor, enable the sequential payment, a link-cost at a time, for an expense up to 364 link-costs.
-
[((2*n+1)*3^n - 1)/2: n in [1..25]]; // Vincenzo Librandi, Jul 07 2018
-
a:=n->sum (3^j*n^binomial(j,n),j=0..n): seq(a(n),n=1..25); # Zerinvary Lajos, Apr 18 2009
-
Rest@ CoefficientList[Series[2x(2-3x)/((1-x)(1-3x)^2), {x, 0, 25}], x] (* Michael De Vlieger, Jul 06 2018 *)
-
vector(25, n, ((2*n+1)*3^n - 1)/2) \\ G. C. Greubel, Apr 14 2019
-
[((2*n+1)*3^n - 1)/2 for n in (1..25)] # G. C. Greubel, Apr 14 2019
A212337
Expansion of 1/(1-4*x+3*x^2)^2.
Original entry on oeis.org
1, 8, 42, 184, 731, 2736, 9844, 34448, 118101, 398584, 1328606, 4384392, 14348911, 46633952, 150663528, 484275616, 1549681961, 4939611240, 15690529810, 49686677720, 156905298051, 494251688848, 1553362450652, 4871909504304, 15251194969981, 47659984281176
Offset: 0
a(0) = 1*1 = 1;
a(1) = 1*4 + 4*1 = 8;
a(2) = 1*13 + 4*4 + 13*1 = 42;
a(3) = 1*40 + 4*13 + 13*4 + 40*1 = 184;
a(4) = 1*121 + 4*40 + 13*13 + 40*4 + 121*1 = 731; etc. - _Philippe Deléham_, Mar 07 2014
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See p. 14.
- Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See p. 16.
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243v1 [math.CO], 2012. See (16).
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. (arXiv:1302.2274)
- Mark Shattuck, Enumeration of consecutive patterns in flattened Catalan words, arXiv:2502.10661 [math.CO], 2025. See pp. 3, 20.
- Index entries for linear recurrences with constant coefficients, signature (8,-22,24,-9).
-
m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^2*(1-3*x)^2))); // Bruno Berselli, May 11 2012
-
Table[1 + n ((1 + 9 3^n)/4), {n, 0, 25}] (* Bruno Berselli, May 11 2012 *)
CoefficientList[Series[1/(1-4x+3x^2)^2,{x,0,30}],x] (* or *) LinearRecurrence[ {8,-22,24,-9},{1,8,42,184},30] (* Harvey P. Dale, Jun 14 2020 *)
-
Vec(1/(1-4*x+3*x^2)^2 + O(x^100)) \\ Altug Alkan, Nov 01 2015
A108283
Triangle read by rows, generated from (..., 3, 2, 1).
Original entry on oeis.org
1, 1, 3, 1, 5, 6, 1, 7, 17, 10, 1, 9, 34, 49, 15, 1, 11, 57, 142, 129, 21, 1, 13, 86, 313, 547, 321, 28, 1, 15, 121, 586, 1593, 2005, 769, 36, 1, 17, 162, 985, 3711, 7737, 7108, 1793, 45, 1, 19, 209, 1534, 7465, 22461, 36409, 24604, 4097, 55, 1, 21, 262, 2257, 13539, 54121, 131836, 167481, 83653, 9217, 66
Offset: 1
4th column = 10, 49, 142, 313, ... = f(x), x = 1, 2, 3; 4x^3 + 3x^2 + 2x + 1. f(3) = 142.
First few rows of the triangle:
1;
1, 3;
1, 5, 6;
1, 7, 17, 10;
1, 9, 34, 49, 15;
1, 11, 57, 142, 129, 21;
...
-
A108283 := proc(n,k)
local x ;
x := n-k+1 ;
add( i*x^(i-1),i=1..k) ;
end proc:
seq(seq( A108283(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Sep 14 2016
-
T[, 1] := 1; T[n, n_] := n (n + 1)/2; T[n_, k_] := (1 - (n - k + 1)^k*(k^2 - k*n + 1))/(n - k)^2; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 13 2016 *)
Showing 1-10 of 14 results.
Comments