cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A000337 a(n) = (n-1)*2^n + 1.

Original entry on oeis.org

0, 1, 5, 17, 49, 129, 321, 769, 1793, 4097, 9217, 20481, 45057, 98305, 212993, 458753, 983041, 2097153, 4456449, 9437185, 19922945, 41943041, 88080385, 184549377, 385875969, 805306369, 1677721601, 3489660929, 7247757313, 15032385537, 31138512897, 64424509441
Offset: 0

Views

Author

Keywords

Comments

a(n) also gives number of 0's in binary numbers 1 to 111..1 (n+1 bits). - Stephen G Penrice, Oct 01 2000
Numerator of m(n) = (m(n-1)+n)/2, m(0)=0. Denominator is A000079. - Reinhard Zumkeller, Feb 23 2002
a(n) is the number of directed column-convex polyominoes of area n+2 having along the lower contour exactly one vertical step that is followed by a horizontal step (a reentrant corner). - Emeric Deutsch, May 21 2003
a(n) is the number of bits in binary numbers from 1 to 111...1 (n bits). Partial sums of A001787. - Emeric Deutsch, May 24 2003
Genus of graph of n-cube = a(n-3) = 1+(n-4)*2^(n-3), n>1.
Sum of ordered partitions of n where each element is summed via T(e-1). See A066185 for more information. - Jon Perry, Dec 12 2003
a(n-2) is the number of Dyck n-paths with exactly one peak at height >= 3. For example, there are 5 such paths with n=4: UUUUDDDD, UUDUUDDD, UUUDDUDD, UDUUUDDD, UUUDDDUD. - David Callan, Mar 23 2004
Permutations in S_{n+2} avoiding 12-3 that contain the pattern 13-2 exactly once.
a(n) is prime for n = 2, 3, 7, 27, 51, 55, 81. a(n) is semiprime for n = 4, 5, 6, 8, 9, 10, 11, 13, 15, 19, 28, 32, 39, 57, 63, 66, 75, 97. - Jonathan Vos Post, Jul 18 2005
A member of the family of sequences defined by a(n) = Sum_{i=1..n} i*[c(1)*...*c(r)]^(i-1). This sequence has c(1)=2, A014915 has c(1)=3. - Ctibor O. Zizka, Feb 23 2008
Starting with 1 = row sums of A023758 as a triangle by rows: [1; 2,3; 4,6,7; 8,12,14,15; ...]. - Gary W. Adamson, Jul 18 2008
Equivalent formula given in Brehm: for each q >= 3 there exists a polyhedral map M_q of type {4, q} with [number of vertices] f_0 = 2^q and [genus] g = (2^(q-3))*(q-4) + 1 such that M_q and its dual have polyhedral embeddings in R^3 [McMullen et al.]. - Jonathan Vos Post, Jul 25 2009
Sums of rows of the triangle in A173787. - Reinhard Zumkeller, Feb 28 2010
This sequence is related to A000079 by a(n) = n*A000079(n)-Sum_{i=0..n-1} A000079(i). - Bruno Berselli, Mar 06 2012
(1 + 5*x + 17*x^2 + 49*x^3 + ...) = (1 + 2*x + 4*x^2 + 8*x^3 + ...) * (1 + 3*x + 7*x^2 + 15*x^3 + ...). - Gary W. Adamson, Mar 14 2012
The first barycentric coordinate of the centroid of Pascal triangles, assuming that numbers are weights, is A000295(n+1)/A000337(n), no matter what the triangle sides are. See attached figure. - César Eliud Lozada, Nov 14 2014
a(n) is the n-th number that is a sum of n positive n-th powers for n >= 1. a(4) = 49 = A003338(4). - Alois P. Heinz, Aug 01 2020
a(n) is the sum of the largest elements of all subsets of {1,2,..,n}. For example, a(3)=17; the subsets of {1,2,3} are {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}, and the sum of the largest elements is 17. - Enrique Navarrete, Aug 20 2020
a(n-1) is the sum of the second largest elements of the subsets of {1,2,..,n} that contain n. For example, for n = 4, a(3)=17; the subsets of {1,2,3,4} that contain 4 are {4}, {1,4}, {2,4}, {3,4}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}, and the sum of the second largest elements is 17. - Enrique Navarrete, Aug 24 2020
a(n-1) is also the sum of diameters of all subsets of {1,2,...,n} that contain n. For example, for n = 4, a(3)=17; the subsets of {1,2,3,4} that contain 4 are {4}, {1,4}, {2,4}, {3,4}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}; the diameters of these sets are 0,3,2,1,3,3,2,3 and the sum is 17. - Enrique Navarrete, Sep 07 2020
a(n-1) is also the number of additions required to compute the permanent of general n X n matrices using trellis methods (see Theorems 5 and 6, pp. 10-11 in Kiah et al.). - Stefano Spezia, Nov 02 2021

References

  • F. Harary, Topological concepts in graph theory, pp. 13-17 of F. Harary and L. Beineke, editors, A seminar on Graph Theory, Holt, Rinehart and Winston, New York, 1967.
  • V. G. Gutierrez and S. L. de Medrano, Surfaces as complete intersections, in Riemann and Klein Surfaces, Automorphisms, Symmetries and Moduli Spaces, edited by Milagros Izquierdo, S. Allen Broughton, Antonio F. Costa, Contemp. Math. vol. 629, 2014, pp. 171-.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 119.
  • G. H. Hardy, A Theorem Concerning the Infinite Cardinal Numbers, Quart. J. Math., 35 (1904), p. 90 = Collected Papers of G. H. Hardy, Vol. VII, p. 430.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = T(3, n), array T given by A048472. A036799/2.
Cf. A003338.
Main diagonal of A336725.

Programs

  • GAP
    List([0..30],n->(n-1)*2^n+1); # Muniru A Asiru, Oct 24 2018
  • Magma
    [(n-1)*2^n + 1: n in [0..40]]; // Vincenzo Librandi, Nov 21 2014
    
  • Maple
    A000337 := proc(n) 1+(n-1)*2^n ; end proc: # R. J. Mathar, Oct 10 2011
  • Mathematica
    Table[Sum[(-1)^(n - k) k (-1)^(n - k) Binomial[n + 1, k + 1], {k, 0, n}], {n, 0, 28}] (* Zerinvary Lajos, Jul 08 2009 *)
    Table[(n - 1) 2^n + 1, {n, 0, 40}] (* Harvey P. Dale, Jun 21 2011 *)
    LinearRecurrence[{5, -8, 4}, {0, 1, 5}, 40] (* Harvey P. Dale, Jun 21 2011 *)
    CoefficientList[Series[x / ((1 - x) (1 - 2 x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 21 2014 *)
  • PARI
    a(n)=if(n<0,0,(n-1)*2^n+1)
    
  • Python
    a=lambda n:((n-1)<<(n))+1 # Indranil Ghosh, Jan 05 2017
    

Formula

Binomial transform of A004273. Binomial transform of A008574 if the leading zero is dropped.
G.f.: x/((1-x)*(1-2*x)^2). - Simon Plouffe in his 1992 dissertation
E.g.f.: exp(x) - exp(2*x)*(1-2*x). a(n) = 4*a(n-1) - 4*a(n-2)+1, n>0. Series reversion of g.f. A(x) is x*A034015(-x). - Michael Somos
Binomial transform of n/(n+1) is a(n)/(n+1). - Paul Barry, Aug 19 2005
a(n) = A119258(n+1,n-1) for n>0. - Reinhard Zumkeller, May 11 2006
Convolution of "Number of fixed points in all 231-avoiding involutions in S_n" (A059570) with "The odd numbers" (A005408), treating the result as if offset=0. - Graeme McRae, Jul 12 2006
a(n) = Sum_{k=1..n} k*2^(k-1), partial sums of A001787. - Zerinvary Lajos, Oct 19 2006
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3), n > 2. - Harvey P. Dale, Jun 21 2011
a(n) = Sum_{k=1..n} Sum_{i=1..n} i * C(k,i). - Wesley Ivan Hurt, Sep 19 2017
a(n) = A000295(n+1)^2 - A000295(n)*A000295(n+2). - Gregory Gerard Wojnar, Oct 23 2018

A000340 a(0)=1, a(n) = 3*a(n-1) + n + 1.

Original entry on oeis.org

1, 5, 18, 58, 179, 543, 1636, 4916, 14757, 44281, 132854, 398574, 1195735, 3587219, 10761672, 32285032, 96855113, 290565357, 871696090, 2615088290, 7845264891, 23535794695, 70607384108, 211822152348, 635466457069
Offset: 0

Views

Author

Keywords

Comments

From Johannes W. Meijer, Feb 20 2009: (Start)
Second right hand column (n-m=1) of the A156920 triangle.
The generating function of this sequence enabled the analysis of the polynomials A156921 and A156925.
(End)
Partial sums of A003462, and thus the second partial sums of A000244 (3^n). Also column k=2 of A106516. - John Keith, Jan 04 2022

Examples

			G.f. = 1 + 5*x + 18*x^2 + 58*x^3 + 179*x^4 + 543*x^5 + 1636*x^6 + ...
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

From Johannes W. Meijer, Feb 20 2009: (Start)
Equals A156920 second right hand column.
Equals A142963 second right hand column divided by 2^n.
Equals A156919 second right hand column divided by 2.
(End)
Cf. A014915.
Equals column k=1 of A008971 (shifted). - Jeremy Dover, Jul 11 2021
Cf. A000340, A003462 (first differences), A106516.

Programs

  • Magma
    [(3^(n+2)-2*n-5)/4: n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
  • Maple
    a[ -1]:=0:a[0]:=1:for n from 1 to 50 do a[n]:=4*a[n-1]-3*a[n-2]+1 od: seq(a[n],n=0..50); # Miklos Kristof, Mar 09 2005
    A000340:=-1/(3*z-1)/(z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    a[ n_] := MatrixPower[ {{1, 0, 0}, {1, 1, 0}, {1, 1, 3}}, n + 1][[3, 1]]; (* Michael Somos, May 28 2014 *)
    RecurrenceTable[{a[0]==1,a[n]==3a[n-1]+n+1},a,{n,30}] (* or *) LinearRecurrence[{5,-7,3},{1,5,18},30] (* Harvey P. Dale, Jan 31 2017 *)

Formula

G.f.: 1/((1-3*x)*(1-x)^2).
a(n) = (3^(n+2) - 2*n - 5)/4.
a(n) = Sum_{k=0..n+1} (n-k+1)*3^k = Sum_{k=0..n+1} k*3^(n-k+1). - Paul Barry, Jul 30 2004
a(n) = Sum_{k=0..n} binomial(n+2, k+2)*2^k. - Paul Barry, Jul 30 2004
a(-1)=0, a(0)=1, a(n) = 4*a(n-1) - 3*a(n-2) + 1. - Miklos Kristof, Mar 09 2005
a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3). - Johannes W. Meijer, Feb 20 2009
a(-2 - n) = 3^-n * A014915(n). - Michael Somos, May 28 2014
E.g.f.: exp(x)*(9*exp(2*x) - 2*x - 5)/4. - Stefano Spezia, Nov 09 2024

A193842 Triangular array: the fission of the polynomial sequence ((x+1)^n: n >= 0) by the polynomial sequence ((x+2)^n: n >= 0). (Fission is defined at Comments.)

Original entry on oeis.org

1, 1, 4, 1, 7, 13, 1, 10, 34, 40, 1, 13, 64, 142, 121, 1, 16, 103, 334, 547, 364, 1, 19, 151, 643, 1549, 2005, 1093, 1, 22, 208, 1096, 3478, 6652, 7108, 3280, 1, 25, 274, 1720, 6766, 17086, 27064, 24604, 9841, 1, 28, 349, 2542, 11926, 37384, 78322, 105796
Offset: 0

Views

Author

Clark Kimberling, Aug 07 2011

Keywords

Comments

Suppose that p = p(n)*x^n + p(n-1)*x^(n-1) + ... + p(1)*x + p(0) is a polynomial and that Q is a sequence of polynomials:
...
q(k,x) = t(k,0)*x^k + t(k,1)*x^(k-1) + ... + t(k,k-1)*x + t(k,k),
...
for k = 0, 1, 2, ... The Q-downstep of p is the polynomial given by
...
D(p) = p(n)*q(n-1,x) + p(n-1)*q(n-2,x) + ... + p(1)*q(0,x). (Note that p(0) does not appear. "Q-downstep" as just defined differs slightly from "Q-downstep" as defined for a different purpose at A193649.)
...
Now suppose that P = (p(n,x): n >= 0) and Q = (q(n,x): n >= 0) are sequences of polynomials, where n indicates degree. The fission of P by Q, denoted by P^^Q, is introduced here as the sequence W = (w(n,x): n >= 0) of polynomials defined by w(0,x) = 1 and w(n,x) = D(p(n+1,x)).
...
Strictly speaking, ^^ is an operation on sequences of polynomials. However, if P and Q are regarded as numerical triangles (of coefficients of polynomials), then ^^ can be regarded as an operation on numerical triangles. In this case, row n of P^^Q, for n > 0, is given by the matrix product P(n+1)*QQ(n), where P(n+1) =(p(n+1,n+1), p(n+1,n), ..., p(n+1,2), p(n+1,1)) and QQ(n) is the (n+1)-by-(n+1) matrix given by
...
q(n,0) .. q(n,1)............. q(n,n-1) .... q(n,n)
0 ....... q(n-1,0)........... q(n-1,n-2)... q(n-1,n-1)
0 ....... 0.................. q(n-2,n-3) .. q(n-2,n-2)
...
0 ....... 0.................. q(1,0) ...... q(1,1)
0 ....... 0 ................. 0 ........... q(0,0).
Here, the polynomial q(k,x) is taken to be
q(k,0)*x^k + q(k,1)x^(k-1) + ... + q(k,k)*x + q(k,k);
i.e., "q" is used instead of "t".
...
Example: Let p(n,x) = (x+1)^n and q(n,x) = (x+2)^n. Then
...
w(0,x) = 1 by the definition of W,
w(1,x) = D(p(2,x)) = 1*(x+2) + 2*1 = x + 4,
w(2,x) = D(p(3,x)) = 1*(x^2+4*x+4) + 3*(x+2) + 3*1 = x^2 + 7*x + 13,
w(3,x) = D(p(4,x)) = 1*(x^3+6*x^2+12*x+8) + 4*(x^2+4x+4) + 6*(x+2) + 4*1 = x^3 + 10*x^2 + 34*x + 40.
...
From these first 4 polynomials in the sequence P^^Q, we can write the first 4 rows of P^^Q when P, Q, and P^^Q are regarded as triangles:
1
1...4
1...7....13
1...10...34...40
...
In the following examples, r(P^^Q) is the mirror of P^^Q, obtained by reversing the rows of P^^Q. Let u denote the polynomial x^n + x^(n-1) + ... + x + 1.
...
..P........Q...........P^^Q........r(P^^Q)
(x+1)^n....(x+2)^n.....A193842.....A193843
(x+1)^n....(x+1)^n.....A193844.....A193845
(x+2)^n....(x+1)^n.....A193846.....A193847
(2x+1)^n...(x+1)^n.....A193856.....A193857
(x+1)^n....(2x+1)^n....A193858.....A193859
(x+1)^n.......u........A054143.....A104709
..u........(x+1)^n.....A074909.....A074909
..u...........u........A002260.....A004736
(x+2)^n.......u........A193850.....A193851
..u.........(x+2)^n....A193844.....A193845
(2x+1)^n......u........A193860.....A193861
..u.........(2x+1)^n...A115068.....A193862
...
Regarding A193842,
col 1 ...... A000012
col 2 ...... A016777
col 3 ...... A081271
w(n,n) ..... A003462
w(n,n-1) ... A014915

Examples

			First six rows, for 0 <= k <= n and 0 <= n <= 5:
  1
  1...4
  1...7....13
  1...10...34....40
  1...13...64....142...121
  1...16...103...334...547...364
		

Crossrefs

Cf. A193722 (fusion of P by Q), A193649 (Q-residue), A193843 (mirror of A193842).

Programs

  • Magma
    [ (&+[3^(k-j)*Binomial(n-j,k-j): j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
  • Maple
    fission := proc(p, q, n) local d, k;
    p(n+1,0)*q(n,x)+add(coeff(p(n+1,x),x^k)*q(n-k,x), k=1..n);
    seq(coeff(%,x,n-k), k=0..n) end:
    A193842_row := n -> fission((n,x) -> (x+1)^n, (n,x) -> (x+2)^n, n);
    for n from 0 to 5 do A193842_row(n) od; # Peter Luschny, Jul 23 2014
    # Alternatively:
    p := (n,x) -> add(x^k*(1+3*x)^(n-k),k=0..n): for n from 0 to 7 do [n], PolynomialTools:-CoefficientList(p(n,x), x) od; # Peter Luschny, Jun 18 2017
  • Mathematica
    (* First program *)
    z = 10;
    p[n_, x_] := (x + 1)^n;
    q[n_, x_] := (x + 2)^n
    p1[n_, k_] := Coefficient[p[n, x], x^k];
    p1[n_, 0] := p[n, x] /. x -> 0;
    d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
    h[n_] := CoefficientList[d[n, x], {x}]
    TableForm[Table[Reverse[h[n]], {n, 0, z}]]
    Flatten[Table[Reverse[h[n]], {n, -1, z}]]  (* A193842 *)
    TableForm[Table[h[n], {n, 0, z}]]  (* A193843 *)
    Flatten[Table[h[n], {n, -1, z}]]
    (* Second program *)
    Table[SeriesCoefficient[((x+3)^(n+1) -1)/(x+2), {x,0,n-k}], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
  • PARI
    T(n,k) = sum(j=0,k, 3^(k-j)*binomial(n-j,k-j)); \\ G. C. Greubel, Feb 18 2020
    
  • Sage
    from mpmath import mp, hyp2f1
    mp.dps = 100; mp.pretty = True
    def T(n,k):
        return 3^k*binomial(n,k)*hyp2f1(1,-k,-n,1/3)-0^(n-k)//2
    for n in range(7):
        print([int(T(n,k)) for k in (0..n)]) # Peter Luschny, Jul 23 2014
    
  • Sage
    # Second program using the 'fission' operation.
    def fission(p, q, n):
        F = p(n+1,0)*q(n,x)+add(expand(p(n+1,x)).coefficient(x,k)*q(n-k,x) for k in (1..n))
        return [expand(F).coefficient(x,n-k) for k in (0..n)]
    A193842_row = lambda k: fission(lambda n,x: (x+1)^n, lambda n,x: (x+2)^n, k)
    for n in range(7): A193842_row(n) # Peter Luschny, Jul 23 2014
    

Formula

From Peter Bala, Jul 16 2013: (Start)
T(n,k) = Sum_{i = 0..k} 3^(k-i)*binomial(n-i,k-i).
O.g.f.: 1/((1 - x*t)*(1 - (1 + 3*x)*t)) = 1 + (1 + 4*x)*t + (1 + 7*x + 13*x^2)*t^2 + ....
The n-th row polynomial is R(n,x) = (1/(2*x + 1))*((3*x + 1)^(n+1) - x^(n+1)). (End)
T(n,k) = T(n-1,k) + 4*T(n-1,k-1) - T(n-2,k-1) - 3*T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 4, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 17 2014
T(n,k) = 3^k * C(n,k) * hyp2F1(1, -k, -n, 1/3) with or without the additional term -0^(n-k)/2 depending on the exact definition of the hypergeometric function used. Compare formulas 15.2.5 and 15.2.6 in the DLMF reference. - Peter Luschny, Jul 23 2014

Extensions

Name and Comments edited by Petros Hadjicostas, Jun 05 2020

A064017 Number of ternary trees (A001764) with n nodes and maximal diameter.

Original entry on oeis.org

1, 3, 12, 45, 162, 567, 1944, 6561, 21870, 72171, 236196, 767637, 2480058, 7971615, 25509168, 81310473, 258280326, 817887699, 2582803260, 8135830269, 25569752274, 80196041223, 251048476872, 784526490225, 2447722649502
Offset: 1

Views

Author

Danail Bonchev (bonchevd(AT)aol.com), Sep 07 2001

Keywords

Comments

A problem important for polymer science because it counts the trees having unbranched branches; they are called "combs".
Equals (1, 3, 9, 27, 81, ...) convolved with (1, 0, 3, 9, 27, 81, ...). Example: a(5) = 162 = (81, 27, 9, 3, 1) dot (1, 0, 3, 9, 27) = 81 + 3*27. - Gary W. Adamson, Jul 31 2010
Floretion Algebra Multiplication Program, FAMP Code: lesforseq[ - 'i + 'j - 'kk' - 'ki' - 'kj' ], vesforseq(n) = 3^n, tesforseq = A006234

Examples

			a(5) = 162 because we can write (5+1)*3^(5-2) = 6*3^3 = 6*27.
		

Crossrefs

Programs

  • Maple
    a:=n->ceil(sum(3^(n-2),j=0..n)): seq(a(n), n=1..26); # Zerinvary Lajos, Jun 05 2008
  • Mathematica
    Join[{1},Table[(n+1)3^(n-2),{n,2,30}]] (* or *) Join[{1}, LinearRecurrence[ {6,-9},{3,12},30]] (* Harvey P. Dale, Feb 07 2012 *)
  • PARI
    { for (n=1, 200, if (n>1, a=(n + 1)*p; p*=3, a=p=1); write("b064017.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 06 2009
    
  • PARI
    a(n)=if(n==1, 1, (n+1)*3^(n-2)); \\ Joerg Arndt, May 06 2013
    
  • SageMath
    @CachedFunction
    def BB(n, k, x):  # modified cardinal B-splines
        if n == 1: return 0 if (x < 0) or (x >= k) else 1
        return x*BB(n-1, k, x) + (n*k-x)*BB(n-1, k, x-k)
    def EulerianPolynomial(n, k, x):
        if n == 0: return 1
        return add(BB(n+1, k, k*m+1)*x^m for m in (0..n))
    def A064017(n) : return 3^(n-1)*EulerianPolynomial(1,n-1,1/3) if n != 1 else 1
    [A064017(n) for n in (1..25)]  # Peter Luschny, May 04 2013

Formula

a(n) = 3*a(n-1) + 3^(n-2).
a(n) = (n+1)*3^(n-2), for n > 1.
From Paul Barry, Sep 05 2003: (Start)
a(n) = (n+2)3^(n-1) + 0^n/3 (offset 0).
a(n) = A025192(n) + A027471(n). (End)
A006234(n+4) - a(n+2) = 3^n. - Creighton Dement, Mar 01 2005
a(n+1) = Sum_{k=0..n} A196389(n,k)*3^k. - Philippe Deléham, Oct 31 2011
G.f.: (1 - 3*x + 3*x^2)*x/(1 - 3*x)^2. - Philippe Deléham, Oct 31 2011
a(n) = 6*a(n-1) - 9*a(n-2), with a(1)=1, a(2)=3, a(3)=12. - Harvey P. Dale, Feb 07 2012
E.g.f.: (exp(3*x)*(1 + 3*x) - 1)/9. - Stefano Spezia, Mar 05 2020
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=1} 1/a(n) = 27*log(3/2) - 19/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 17/2 - 27*log(4/3). (End)

A027261 a(n) = Sum_{k=0..2n} (k+1) * A025177(n, k).

Original entry on oeis.org

1, 4, 18, 72, 270, 972, 3402, 11664, 39366, 131220, 433026, 1417176, 4605822, 14880348, 47829690, 153055008, 487862838, 1549681956, 4907326194, 15496819560, 48814981614, 153418513644, 481176247338, 1506290861232, 4707158941350, 14686335897012, 45753584909922
Offset: 0

Views

Author

Keywords

Crossrefs

Formula

a(n) = 2(n+1)*3^(n-1), for n>1 (conjectured). - Ralf Stephan, Feb 02 2004
From Colin Barker, Jul 28 2012: (Start)
Conjecture: a(n) = 6*a(n-1)-9*a(n-2), for n>3.
G.f.: (1-9*x^2+18*x^3)/(1-3*x)^2. (End)

Extensions

a(1) corrected and more terms from Sean A. Irvine, Oct 26 2019

A014917 a(1)=1, a(n) = n*5^(n-1) + a(n-1).

Original entry on oeis.org

1, 11, 86, 586, 3711, 22461, 131836, 756836, 4272461, 23803711, 131225586, 717163086, 3890991211, 20980834961, 112533569336, 600814819336, 3194808959961, 16927719116211, 89406967163086, 470876693725586, 2473592758178711, 12964010238647461, 67800283432006836, 353902578353881836
Offset: 1

Views

Author

Keywords

Comments

From Gary Detlefs, Aug 31 2021 (Start)
This is the x=5 member of the x-family of sequences with member a(x, n) = x^n*Sum_{k=1..n} S(x, k), with S(x, k) = Sum_{j=1..k} 1/x^j.
S(x, k) = (x^k - 1)/((x-1)*x^k) = (1/x^k)*Sum_{j=0..k-1} x^j, and a(x,n) = ((n*(x-1) - 1)*x^n + 1)/(x-1)^2.
The sequence {x^k*S(x, k)} with recurrence signature (x+1, -x) leads to sequence {a(x, n)} with recurrence signature (2*x+1, -x*(x+2), x^2). (End) [Rewritten by Wolfdieter Lang, Nov 30 2021]

Crossrefs

Programs

  • Magma
    I:=[1, 11]; [n le 2 select I[n] else 10*Self(n-1)-25*Self(n-2)+ 1: n in [1..30]]; // Vincenzo Librandi, Oct 23 2012
  • Mathematica
    CoefficientList[Series[1/((1 - x)(1 - 5 x)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 23 2012 *)
    LinearRecurrence[{11,-35,25},{1,11,86},20] (* Harvey P. Dale, May 06 2013 *)

Formula

From Vincenzo Librandi, Oct 23 2012: (Start)
a(n) = 10*a(n-1) - 25*a(n-2) + 1; a(1)=1, a(2)=11.
G.f.: x/((1-x)*(1-5*x)^2). (End)
a(n) = 11*a(n-1) - 35*a(n-2) + 25*a(n-3); a(1)=1, a(2)=11, a(3)=86. - Harvey P. Dale, May 06 2013
a(n) = 5^n*Sum_{k=1..n} (Sum_{j=1..k} 1/x^j) = ((4*n - 1)*5^n + 1)/4^2. See the general comment above, and the first formula. - Gary Detlefs, Aug 31 2021 [Edited by Wolfdieter Lang, Nov 30 2021]
E.g.f.: exp(x)*(1 + exp(4*x)*(20*x - 1))/16. - Elmo R. Oliveira, May 24 2025

A059045 Square array T(n,k) read by antidiagonals where T(0,k) = 0 and T(n,k) = 1 + 2k + 3k^2 + ... + n*k^(n-1).

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 17, 7, 1, 0, 1, 15, 49, 34, 9, 1, 0, 1, 21, 129, 142, 57, 11, 1, 0, 1, 28, 321, 547, 313, 86, 13, 1, 0, 1, 36, 769, 2005, 1593, 586, 121, 15, 1, 0, 1, 45, 1793, 7108, 7737, 3711, 985, 162, 17, 1, 0, 1, 55, 4097, 24604, 36409
Offset: 0

Views

Author

Henry Bottomley, Dec 18 2000

Keywords

Examples

			   0,   0,   0,    0,     0,      0,      0,      0,       0, ...
   1,   1,   1,    1,     1,      1,      1,      1,       1, ...
   1,   3,   5,    7,     9,     11,     13,     15,      17, ...
   1,   6,  17,   34,    57,     86,    121,    162,     209, ...
   1,  10,  49,  142,   313,    586,    985,   1534,    2257, ...
   1,  15, 129,  547,  1593,   3711,   7465,  13539,   22737, ...
   1,  21, 321, 2005,  7737,  22461,  54121, 114381,  219345, ...
   1,  28, 769, 7108, 36409, 131836, 380713, 937924, 2054353, ...
		

Crossrefs

Programs

  • Maple
    A059045 := proc(n,k)
        if k = 1 then
            n*(n+1) /2 ;
        else
            (1+n*k^(n+1)-k^n*(n+1))/(k-1)^2 ;
        end if;
    end proc: # R. J. Mathar, Mar 29 2013

Formula

T(n,k) = n*k^(n-1)+T(n-1, k) = (n*k^(n+1)-(n+1)*k^n+1)/(k-1)^2.

A079272 a(n) = ((2n+1)*3^n - 1)/2.

Original entry on oeis.org

4, 22, 94, 364, 1336, 4738, 16402, 55768, 186988, 620014, 2037190, 6643012, 21523360, 69353050, 222408058, 710270896, 2259952852, 7167279046, 22664098606, 71479080220, 224897593864, 706073841202, 2212364702434, 6919523643784, 21605859540796, 67359444450718
Offset: 1

Views

Author

Lekraj Beedassy, Feb 06 2003

Keywords

Comments

Sequence corresponds to the maximum chain length of a variant of the classical puzzle whereby, under agreed terms, a ringed golden chain asset of a(n) links, when judiciously fragmented into n opened links (through n cuts) and n pieces of lengths (2n+1), (2n+1)*3, (2n+1)*3^2, ..., (2n+1)*3^(n-1), may be used to sequentially settle for payment equivalent up to a(n)-link cost, a link-cost at a time, with swapping allowed with identical fragments owned by the creditor.
a(n) = the difference of the sum of the terms in row(n) and row(n-1) in a triangle with first column T(n-1,0) = n-1 and T(i,j) = T(i-1,j-1) + T(i,j-1) + T(i+1,j-1). - J. M. Bergot, Jul 05 2018

Examples

			For instance, the 4 fragmented chains of original length a(4) = 364 into
.
   1 +  9  + 1
   +         +
  243       27
   +         +
   1 +  81 + 1
.
when swapped with identical fragments owned by the creditor, enable the sequential payment, a link-cost at a time, for an expense up to 364 link-costs.
		

Crossrefs

Programs

  • Magma
    [((2*n+1)*3^n - 1)/2: n in [1..25]]; // Vincenzo Librandi, Jul 07 2018
    
  • Maple
    a:=n->sum (3^j*n^binomial(j,n),j=0..n): seq(a(n),n=1..25); # Zerinvary Lajos, Apr 18 2009
  • Mathematica
    Rest@ CoefficientList[Series[2x(2-3x)/((1-x)(1-3x)^2), {x, 0, 25}], x] (* Michael De Vlieger, Jul 06 2018 *)
  • PARI
    vector(25, n, ((2*n+1)*3^n - 1)/2) \\ G. C. Greubel, Apr 14 2019
    
  • Sage
    [((2*n+1)*3^n - 1)/2 for n in (1..25)] # G. C. Greubel, Apr 14 2019

Formula

From Colin Barker, Jul 28 2012: (Start)
a(n) = 7*a(n-1) - 15*a(n-2) + 9*a(n-3).
G.f.: 2*x*(2-3*x)/((1-x)*(1-3*x)^2). (End)
a(n) = f^n(n) with f(x) = 3*x+1 = A016777(x). - Glen Gilchrist, Apr 10 2019
E.g.f.: ((1+3*x)*sinh(x) + 3*x*cosh(x))*exp(2*x). - G. C. Greubel, Apr 14 2019

Extensions

More terms from Michel ten Voorde, Jun 20 2003

A212337 Expansion of 1/(1-4*x+3*x^2)^2.

Original entry on oeis.org

1, 8, 42, 184, 731, 2736, 9844, 34448, 118101, 398584, 1328606, 4384392, 14348911, 46633952, 150663528, 484275616, 1549681961, 4939611240, 15690529810, 49686677720, 156905298051, 494251688848, 1553362450652, 4871909504304, 15251194969981, 47659984281176
Offset: 0

Views

Author

N. J. A. Sloane, May 09 2012

Keywords

Comments

Partial sums of A014915. - Bruno Berselli, Oct 26 2012
Convolution of A003462(n+1) with itself. - Philippe Deléham, Mar 07 2014

Examples

			a(0) = 1*1 = 1;
a(1) = 1*4 + 4*1 = 8;
a(2) = 1*13 + 4*4 + 13*1 = 42;
a(3) = 1*40 + 4*13 + 13*4 + 40*1 = 184;
a(4) = 1*121 + 4*40 + 13*13 + 40*4 + 121*1 = 731; etc. - _Philippe Deléham_, Mar 07 2014
		

Crossrefs

Programs

  • Magma
    m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^2*(1-3*x)^2))); // Bruno Berselli, May 11 2012
    
  • Mathematica
    Table[1 + n ((1 + 9 3^n)/4), {n, 0, 25}] (* Bruno Berselli, May 11 2012 *)
    CoefficientList[Series[1/(1-4x+3x^2)^2,{x,0,30}],x] (* or *) LinearRecurrence[ {8,-22,24,-9},{1,8,42,184},30] (* Harvey P. Dale, Jun 14 2020 *)
  • PARI
    Vec(1/(1-4*x+3*x^2)^2 + O(x^100)) \\ Altug Alkan, Nov 01 2015

Formula

From Bruno Berselli, May 11 2012: (Start)
G.f.: 1/((1-x)^2*(1-3*x)^2).
a(n) = 1+n*(1+9*3^n)/4. (End)
E.g.f.: exp(x)*(4 + x + 27*exp(2*x)*x)/4. - Stefano Spezia, May 14 2024

A108283 Triangle read by rows, generated from (..., 3, 2, 1).

Original entry on oeis.org

1, 1, 3, 1, 5, 6, 1, 7, 17, 10, 1, 9, 34, 49, 15, 1, 11, 57, 142, 129, 21, 1, 13, 86, 313, 547, 321, 28, 1, 15, 121, 586, 1593, 2005, 769, 36, 1, 17, 162, 985, 3711, 7737, 7108, 1793, 45, 1, 19, 209, 1534, 7465, 22461, 36409, 24604, 4097, 55, 1, 21, 262, 2257, 13539, 54121, 131836, 167481, 83653, 9217, 66
Offset: 1

Views

Author

Gary W. Adamson, May 30 2005

Keywords

Comments

Inverse binomial transforms of each column form the rows of A108284. Rightmost diagonal = triangular numbers, (A000217); while diagonals going to the left from (1, 3, 6, ...) are A000337 starting with 1: (1, 5, 17, 49, ...); A014915: (1, 7, 34, 142, ...); A014916: (1, 9, 57, ...); A014917: (1, 11, 86, ...).

Examples

			4th column = 10, 49, 142, 313, ... = f(x), x = 1, 2, 3; 4x^3 + 3x^2 + 2x + 1. f(3) = 142.
First few rows of the triangle:
  1;
  1,  3;
  1,  5,  6;
  1,  7, 17,  10;
  1,  9, 34,  49,  15;
  1, 11, 57, 142, 129, 21;
  ...
		

Crossrefs

Programs

  • Maple
    A108283 := proc(n,k)
        local x ;
        x := n-k+1 ;
        add( i*x^(i-1),i=1..k) ;
    end proc:
    seq(seq( A108283(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Sep 14 2016
  • Mathematica
    T[, 1] := 1; T[n, n_] := n (n + 1)/2; T[n_, k_] := (1 - (n - k + 1)^k*(k^2 - k*n + 1))/(n - k)^2; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 13 2016 *)

Formula

n-th column = f(x), x = 1, 2, 3; n*x^(n-1) + (n-1)*x^(n-2) + (n-3)*x^(n-3) + ... + 1.
T(n,k) = (1+ (n-k+1)^k*(n*k-k^2-1))/ (n-k)^2, n>k. - Jean-François Alcover, Sep 13 2016

Extensions

More terms from Jean-François Alcover, Sep 13 2016
Showing 1-10 of 14 results. Next