Stephen G Penrice has authored 23 sequences. Here are the ten most recent ones:
A061021
a(n) = a(n-1)*a(n-2) - a(n-3) with a(0) = a(1) = a(2) = 3.
Original entry on oeis.org
3, 3, 3, 6, 15, 87, 1299, 112998, 146784315, 16586334025071, 2434613678231239448367, 40381315689150066251526220641224742, 98312903521778500654864668915856114278134197773017871243
Offset: 0
-
a061021 n = a061021_list !! n
a061021_list = 3 : 3 : 3 : zipWith (-)
(tail $ zipWith (*) (tail a061021_list) a061021_list) a061021_list
-- Reinhard Zumkeller, Mar 25 2015
-
RecurrenceTable[{a[n] == a[n - 1] a[n - 2] - a[n - 3], a[0] == a[1] == a[2] == 3}, a, {n, 0, 12}] (* Michael De Vlieger, Aug 21 2016 *)
-
for (n=0, 17, if (n>2, a=a1*a2 - a3; a3=a2; a2=a1; a1=a, if (n==0, a=a3=3, if (n==1, a=a2=3, a=a1=3))); write("b061021.txt", n, " ", a)) \\ Harry J. Smith, Jul 16 2009
A061292
a(n) = a(n-1)*a(n-2)*a(n-3) - a(n-4) for n>3 with a(0) = a(1) = a(2) = a(3) = 2.
Original entry on oeis.org
2, 2, 2, 2, 6, 22, 262, 34582, 199330642, 1806032092550706, 12449434806576800059248920402, 4481765860945171681908664776799089162954814190172722
Offset: 0
-
a061292 n = a061292_list !! n
a061292_list = 2 : 2 : 2 : 2 : zipWith (-)
(zipWith3 (((*) .) . (*)) (drop 2 xs) (tail xs) xs) a061292_list
where xs = tail a061292_list
-- Reinhard Zumkeller, Mar 25 2015
-
I:=[2,2,2,2]; [n le 4 select I[n] else Self(n-1)*Self(n-2)*Self(n-3)-Self(n-4): n in [1..12]]; // Vincenzo Librandi, Sep 17 2011
-
a[1] := 2; a[2] := 2; a[3] := 2; a[4] := 2; a[n_] := a[n - 1]*a[n - 2]*a[n - 3] - a[n - 4]; Table[a[n], {n, 1, 15}] (* Stefan Steinerberger, Mar 31 2006 *)
RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==2,a[n]==a[n-1]a[n-2]a[n-3]- a[n-4]},a[n],{n,12}] (* Harvey P. Dale, Sep 15 2011 *)
More terms from Larry Reeves (larryr(AT)acm.org) and
Jason Earls, Jun 05 2001
A055006
a(n) is the least multiple of n such that a(n) = 1 mod k for all integers k with 1 < k < n and k relatively prime to n.
Original entry on oeis.org
1, 2, 3, 4, 25, 6, 301, 736, 2241, 190, 25201, 4236, 83161, 19306, 64065, 135136, 7207201, 85086, 49008961, 49468420, 36951201, 27776386, 698377681, 855189336, 25700298625, 2445441076, 74364290001, 13624600276, 2248776129601, 6254036790, 39594522567601
Offset: 1
-
Table[Block[{m = 1, t = Select[Range[2, n - 1], CoprimeQ[#, n] &]}, While[! AllTrue[t, Mod[m n, #] == 1 &], m++]; m n], {n, 20}] (* Michael De Vlieger, Mar 08 2022 *)
-
isok(m, n) = for (k=2, n-1, if ((gcd(k, n)==1) && ((m % k) !=1), return(0))); return(1);
a(n) = my(m=n); while (!isok(m,n), m+=n); m; \\ Michel Marcus, Mar 08 2022
A050400
Number of independent sets of vertices in P_3 X C_n (n > 2).
Original entry on oeis.org
5, 1, 17, 43, 181, 621, 2309, 8303, 30277, 109753, 398857, 1447931, 5258725, 19095285, 69344061, 251811903, 914429445, 3320635025, 12058502657, 43789003563, 159014593621, 577442573597, 2096914206261, 7614694850543, 27651860345029, 100414447219721, 364643142303353
Offset: 0
-
a:=[5,1,17,43,181];; for n in [6..30] do a[n]:=a[n-1]+8*a[n-2] +6*a[n-3] -a[n-4]-a[n-5]; od; a; # G. C. Greubel, Oct 30 2019
-
I:=[5,1,17,43,181]; [n le 5 select I[n] else Self(n-1) + 8*Self(n-2) + 6*Self(n-3) - Self(n-4) - Self(n-5): n in [1..30]]; // Vincenzo Librandi, May 11 2017
-
seq(coeff(series((5-4*x-24*x^2-12*x^3+x^4)/((1+x)*(1-2*x-6*x^2+x^4)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 30 2019
-
CoefficientList[Series[(5-4*x-24*x^2-12*x^3+x^4)/((1+x)*(1-2*x-6*x^2+ x^4)), {x, 0, 30}], x] (* Vincenzo Librandi, May 11 2017 *)
-
my(x='x+O('x^30)); Vec((5-4*x-24*x^2-12*x^3+x^4)/((1+x)*(1-2*x-6*x^2+x^4))) \\ G. C. Greubel, Oct 30 2019
-
def A077952_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((5-4*x-24*x^2-12*x^3+x^4)/((1+x)*(1-2*x-6*x^2+x^4))).list()
A077952_list(30) # G. C. Greubel, Oct 30 2019
More terms from Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999
A050401
Number of independent sets of nodes in P_4 X C_n (n > 2).
Original entry on oeis.org
8, 1, 41, 142, 933, 4741, 26660, 143697, 788453, 4293286, 23454801, 127953981, 698467368, 3811712633, 20803963753, 113540081302, 619672701957, 3381980484909, 18457878595412, 100737602247769, 549796303339413
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,20,27,-14,-25,4,5,-1).
-
a:=[8,1,41,142,933,4741,26660,143697];; for n in [9..30] do a[n]:= a[n-1]+20*a[n-2]+27*a[n-3]-14*a[n-4]-25*a[n-5]+4*a[n-6]+5*a[n-7]-a[n-8]; od; a; # G. C. Greubel, Oct 30 2019
-
I:=[8,1,41,142,933,4741,26660,143697]; [n le 8 select I[n] else Self(n-1)+20*Self(n-2)+27*Self(n-3)-14*Self(n-4)- 25*Self(n-5)+4*Self(n-6)+5*Self(n-7)-Self(n-8): n in [1..30]]; // Vincenzo Librandi, May 11 2017
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (8 -7*x -120*x^2 -135*x^3 +56*x^4 +75*x^5 -8*x^6 -5*x^7)/((1+x)*(1+2*x-x^2)*( 1-4*x-9*x^2+5*x^3+4*x^4-x^5)) )); // G. C. Greubel, Oct 30 2019
-
seq(coeff(series((8 -7*x -120*x^2 -135*x^3 +56*x^4 +75*x^5 -8*x^6 -5*x^7)/( (1+x)*(1+2*x-x^2)*(1-4*x-9*x^2+5*x^3+4*x^4-x^5)), x, n+1), x, n), n = 0 ..30); # G. C. Greubel, Oct 30 2019
-
CoefficientList[Series[(8-7*x-120*x^2-135*x^3+56*x^4+75*x^5-8*x^6-5*x^7) /( (1+x)*(1+2*x-x^2)*(1-4*x-9*x^2+5*x^3+4*x^4-x^5)), {x, 0, 50}], x] (* Vincenzo Librandi, May 11 2017 *)
-
my(x='x+O('x^30)); Vec((8 -7*x -120*x^2 -135*x^3 +56*x^4 +75*x^5 -8*x^6 -5*x^7)/((1+x)*(1+2*x-x^2)*(1-4*x-9*x^2+5*x^3+4*x^4-x^5))) \\ G. C. Greubel, Oct 30 2019
-
def A050401_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((8 -7*x -120*x^2 -135*x^3 +56*x^4 +75*x^5 -8*x^6 -5*x^7)/((1+x)*(1+2*x-x^2)*(1-4*x-9*x^2+5*x^3+4*x^4-x^5))).list()
A050401_list(30) # G. C. Greubel, Oct 30 2019
More terms from Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999
A051928
Number of independent sets of vertices in graph K_3 X C_n (n > 2).
Original entry on oeis.org
4, 1, 13, 34, 121, 391, 1300, 4285, 14161, 46762, 154453, 510115, 1684804, 5564521, 18378373, 60699634, 200477281, 662131471, 2186871700, 7222746565, 23855111401, 78788080762, 260219353693, 859446141835, 2838557779204, 9375119479441, 30963916217533
Offset: 0
-
LinearRecurrence[{2,4,1},{4,1,13},30] (* Harvey P. Dale, Nov 20 2021 *)
-
Vec((4-7*x-5*x^2)/((1+x)*(1-3*x-x^2)) + O(x^30)) \\ Colin Barker, May 11 2017
A053763
a(n) = 2^(n^2 - n).
Original entry on oeis.org
1, 1, 4, 64, 4096, 1048576, 1073741824, 4398046511104, 72057594037927936, 4722366482869645213696, 1237940039285380274899124224, 1298074214633706907132624082305024, 5444517870735015415413993718908291383296, 91343852333181432387730302044767688728495783936
Offset: 0
a(2)=4 because there are four 2 x 2 nilpotent matrices over GF(2):{{0,0},{0,0}},{{0,1},{0,0}},{{0,0},{1,0}},{{1,1,},{1,1}} where 1+1=0. - _Geoffrey Critzer_, Oct 05 2012
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 521.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 5, Eq. (1.1.5).
- T. D. Noe, Table of n, a(n) for n = 0..35
- Marcus Brinkmann, Extended Affine and CCZ Equivalence up to Dimension 4, Ruhr University Bochum (2019).
- N. J. Fine and I. N. Herstein, The probability that a matrix be nilpotent, Illinois J. Math., 2 (1958), 499-504.
- Murray Gerstenhaber, On the number of nilpotent matrices with coefficients in a finite field, Illinois J. Math., Vol. 5 (1961), 330-333.
- Antal Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
- Pakawut Jiradilok, Some Combinatorial Formulas Related to Diagonal Ramsey Numbers, arXiv:2404.02714 [math.CO], 2024. See p. 19.
- Greg Kuperberg, Symmetry classes of alternating-sign matrices under one roof, Annals of mathematics, Second Series, Vol. 156, No. 3 (2002), pp. 835-866, arXiv preprint, arXiv:math/0008184 [math.CO], 2000-2001 (see Th. 3).
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Götz Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
-
seq(4^(binomial(n, n-2)), n=0..12); # Zerinvary Lajos, Jun 16 2007
a:=n->mul(4^j, j=1..n-1): seq(a(n), n=0..12); # Zerinvary Lajos, Oct 03 2007
-
Table[2^(2*Binomial[n,2]), {n,0,20}] (* Geoffrey Critzer, Oct 04 2012 *)
-
a(n)=1<<(n^2-n) \\ Charles R Greathouse IV, Nov 20 2012
-
def A053763(n): return 1<Chai Wah Wu, Jul 05 2024
A050402
Number of independent sets of nodes in C_4 X C_n (n > 2).
Original entry on oeis.org
7, 1, 35, 121, 743, 3561, 18995, 96433, 500871, 2573905, 13292995, 68492073, 353290343, 1821383097, 9392360019, 48428332641, 249716406791, 1287608913057, 6639354593123, 34234612471001, 176524935990503, 910219628918665, 4693389213891699, 24200638961917201
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Torus Grid Graph
- Index entries for linear recurrences with constant coefficients, signature (2,15,8,-7,-2,1).
-
a:=[7,1,35,121,743,3561];; for n in [7..30] do a[n]:=2*a[n-1] +15*a[n-2]+8*a[n-3]-7*a[n-4]-2*a[n-5]-a[n-6]; od; a; # G. C. Greubel, Oct 30 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (7 -13*x -72*x^2 -20*x^3 +17*x^4 +x^5)/((1+x)*(1+2*x-x^2)*(1-5*x-x^2+x^3)) )); // G. C. Greubel, Oct 30 2019
-
seq(coeff(series((7-13*x-72*x^2-20*x^3+17*x^4+x^5)/((1+x)*(1+2*x-x^2) *(1-5*x-x^2+x^3)), x, n+1), x, n), n = 0 ..30); # G. C. Greubel, Oct 30 2019
-
CoefficientList[Series[(7 -13*x -72*x^2 -20*x^3 +17*x^4 +x^5)/((1+x)*(1+2*x-x^2)*(1-5*x-x^2+x^3)), {x, 0, 30}], x]
-
Vec((7-13*x-72*x^2-20*x^3+17*x^4+x^5)/((1+x)*(1+2*x-x^2)*(1-5*x- x^2+x^3)) + O(x^30)) \\ Colin Barker, May 11 2017
-
def A050402_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((7 -13*x -72*x^2 -20*x^3 +17*x^4 +x^5)/((1+x)*(1+2*x-x^2)*(1-5*x-x^2+x^3))).list()
A050402_list(30) # G. C. Greubel, Oct 30 2019
More terms from Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999
A051927
Number of independent vertex sets in the n-prism graph Y_n = K_2 X C_n (n > 2).
Original entry on oeis.org
3, 1, 7, 13, 35, 81, 199, 477, 1155, 2785, 6727, 16237, 39203, 94641, 228487, 551613, 1331715, 3215041, 7761799, 18738637, 45239075, 109216785, 263672647, 636562077, 1536796803, 3710155681, 8957108167, 21624372013, 52205852195
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, pp. 400-401.
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Prism Graph
- Eric Weisstein's World of Mathematics, Vertex Cover
- Index entries for linear recurrences with constant coefficients, signature (1,3,1).
-
I:=[3, 1, 7]; [n le 3 select I[n] else Self(n-1) + 3*Self(n-2) + Self(n-3): n in [1..30]]; // Vincenzo Librandi, May 04 2013
-
A051927 := x -> (1+sqrt(2))^x+(-1)^x+(1-sqrt(2))^x;
seq(simplify(A051927(i)),i=0..28); # Peter Luschny, Aug 13 2012
-
CoefficientList[Series[(3 - 2 x - 3 x^2) / ((1 - 2 x - x^2) (1 + x)), {x, 0, 40}], x] (* Vincenzo Librandi, May 04 2013 *)
Table[LucasL[n, 2] + (-1)^n, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
LinearRecurrence[{1, 3, 1}, {1, 7, 13}, {0, 20}] (* Eric W. Weisstein, Sep 27 2017 *)
-
a(n)=polcoeff((3-2*x-3*x^2)/(1-2*x-x^2)/(1+x)+x*O(x^n),n)
-
x='x+O('x^66); Vec( (3-2*x-3*x^2)/((1-2*x-x^2)*(1+x)) ) \\ Joerg Arndt, May 04 2013
-
def A051927(x) : return (1+sqrt(2))^x+(-1)^x+(1-sqrt(2))^x
[A051927(i).round() for i in (0..28)] # Peter Luschny, Aug 13 2012
A051926
Number of independent sets of nodes in graph C_4 X P_n (n>2).
Original entry on oeis.org
1, 7, 35, 181, 933, 4811, 24807, 127913, 659561, 3400911, 17536203, 90422365, 466247117, 2404121747, 12396433487, 63920042065, 329592522065, 1699486218903, 8763103574515, 45185411569413, 232990675202677, 1201375684008283, 6194683683674679, 31941803427179001
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
- Sela Fried and Toufik Mansour, Staircase graph words, arXiv:2312.08273 [math.CO], 2023.
- Index entries for linear recurrences with constant coefficients, signature (5,1,-1).
-
I:=[1, 7, 35]; [n le 3 select I[n] else 5*Self(n-1)+Self(n-2)-Self(n-3): n in [1..25]]; // Vincenzo Librandi, Apr 27 2012
-
CoefficientList[Series[(1+2*x-x^2)/(1-5*x-x^2+x^3),{x,0,30}],x] (* Vincenzo Librandi, Apr 27 2012 *)
LinearRecurrence[{5,1,-1},{1,7,35},40] (* Harvey P. Dale, Apr 29 2019 *)
Comments