cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A287376 Array read by antidiagonals: T(m,n) = number of independent vertex sets in the complete prism graph K_m X C_n.

Original entry on oeis.org

1, 3, 1, 4, 7, 1, 7, 13, 13, 1, 11, 35, 34, 21, 1, 18, 81, 121, 73, 31, 1, 29, 199, 391, 325, 136, 43, 1, 47, 477, 1300, 1361, 731, 229, 57, 1, 76, 1155, 4285, 5781, 3771, 1447, 358, 73, 1, 123, 2785, 14161, 24473, 19606, 8881, 2605, 529, 91, 1
Offset: 1

Views

Author

Andrew Howroyd, May 23 2017

Keywords

Comments

Equivalently, the number of 0..m words of length n with cyclically adjacent letters unequal with the exception that 0's may be adjacent.

Examples

			Table starts:
====================================================
m\n| 1  2   3    4     5      6       7        8
---|------------------------------------------------
1  | 1  3   4    7    11     18      29       47 ...
2  | 1  7  13   35    81    199     477     1155 ...
3  | 1 13  34  121   391   1300    4285    14161 ...
4  | 1 21  73  325  1361   5781   24473   103685 ...
5  | 1 31 136  731  3771  19606  101781   528531 ...
6  | 1 43 229 1447  8881  54763  337429  2079367 ...
7  | 1 57 358 2605 18551 132504  946037  6754805 ...
8  | 1 73 529 4361 35361 287305 2333745 18957321 ...
...
		

Crossrefs

Cf. A135597 (K_m X P_n), A106512, A175243.

Programs

  • Mathematica
    max = 10; row[m_] := ((m+1) - (m^2 - 2)*x - (2*m - 1)*x^2)/(1 - (m-1)*x - (m+1)*x^2 - x^3) + O[x]^(max+1) // CoefficientList[#, x]& // Rest;
    T = Table[row[m], {m, 1, max}];
    Table[T[[m-n+1, n]], {m, 1, max}, {n, m, 1, -1}] // Flatten (* Jean-François Alcover, Jun 06 2017 *)
  • PARI
    RowGf(m,x)=((m+1)-(m^2-2)*x-(2*m-1)*x^2)/(1-(m-1)*x-(m+1)*x^2-x^3);
    for (m=1,8,for(n=1,8,print1(Vec(RowGf(m,x)+O(x^(n+1)))[n+1], " "));print);

Formula

Row g.f.: ((m+1)-(m^2-2)*x-(2*m-1)*x^2)/(1-(m-1)*x-(m+1)*x^2-x^3).
Showing 1-1 of 1 results.