cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A051927 Number of independent vertex sets in the n-prism graph Y_n = K_2 X C_n (n > 2).

Original entry on oeis.org

3, 1, 7, 13, 35, 81, 199, 477, 1155, 2785, 6727, 16237, 39203, 94641, 228487, 551613, 1331715, 3215041, 7761799, 18738637, 45239075, 109216785, 263672647, 636562077, 1536796803, 3710155681, 8957108167, 21624372013, 52205852195
Offset: 0

Views

Author

Stephen G Penrice, Dec 19 1999

Keywords

Comments

For n>1, a(n) is also the number of ways to place k non-attacking wazirs on a 2 X n horizontal cylinder, summed over all k>=0 (wazir is a leaper [0,1]). - Vaclav Kotesovec, May 08 2012
Also the number of vertex covers for Y_n. - Eric W. Weisstein, Jan 04 2014

Crossrefs

Column 2 of A286513 and row 2 of A287376.

Programs

  • Magma
    I:=[3, 1, 7]; [n le 3 select I[n] else Self(n-1) + 3*Self(n-2) + Self(n-3): n in [1..30]]; // Vincenzo Librandi, May 04 2013
    
  • Maple
    A051927 := x -> (1+sqrt(2))^x+(-1)^x+(1-sqrt(2))^x;
    seq(simplify(A051927(i)),i=0..28); # Peter Luschny, Aug 13 2012
  • Mathematica
    CoefficientList[Series[(3 - 2 x - 3 x^2) / ((1 - 2 x - x^2) (1 + x)), {x, 0, 40}], x] (* Vincenzo Librandi, May 04 2013 *)
    Table[LucasL[n, 2] + (-1)^n, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
    LinearRecurrence[{1, 3, 1}, {1, 7, 13}, {0, 20}] (* Eric W. Weisstein, Sep 27 2017 *)
  • PARI
    a(n)=polcoeff((3-2*x-3*x^2)/(1-2*x-x^2)/(1+x)+x*O(x^n),n)
    
  • PARI
    x='x+O('x^66); Vec( (3-2*x-3*x^2)/((1-2*x-x^2)*(1+x)) ) \\ Joerg Arndt, May 04 2013
  • Sage
    def A051927(x) : return (1+sqrt(2))^x+(-1)^x+(1-sqrt(2))^x
    [A051927(i).round() for i in (0..28)] # Peter Luschny, Aug 13 2012
    

Formula

a(n) = a(n-1) + 3*a(n-2) + a(n-3).
G.f.: (3-2x-3x^2)/((1-2x-x^2)(1+x)). - Michael Somos, Apr 07 2003
Let A=[0, 1, 1;1, 1, 1;1, 1, 0] be the adjacency matrix of a triangle with a loop at a vertex. Then a(n)=trace(A^n). a(n)=(-1)^n+(1-sqrt(2))^n+(1+sqrt(2))^n. - Paul Barry, Jul 22 2004
a(n) = A002203(n) + (-1)^n. - Vladimir Reshetnikov, Sep 15 2016
a(n)+a(n+1) = 4*A000129(n+1). - R. J. Mathar, Feb 13 2020
E.g.f.: cosh(x) + 2*exp(x)*cosh(sqrt(2)*x) - sinh(x). - Stefano Spezia, Mar 31 2024

A135597 Square array read by antidiagonals: row m (m >= 1) satisfies b(0) = b(1) = 1; b(n) = m*b(n-1) + b(n-2).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 5, 1, 1, 5, 13, 17, 8, 1, 1, 6, 21, 43, 41, 13, 1, 1, 7, 31, 89, 142, 99, 21, 1, 1, 8, 43, 161, 377, 469, 239, 34, 1, 1, 9, 57, 265, 836, 1597, 1549, 577, 55, 1, 1, 10, 73, 407, 1633, 4341, 6765, 5116, 1393, 89, 1, 1, 11, 91, 593, 2906
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2008

Keywords

Comments

For n > 1, the number of independent vertex sets in the graph K_m X P_{n-1}. For example, in K_3 X P_1 there are 4 independent vertex sets. - Andrew Howroyd, May 23 2017

Examples

			Array begins:
========================================================
m\n| 0 1 2  3   4    5     6      7       8        9
---|----------------------------------------------------
1  | 1 1 2  3   5    8    13     21      34       55 ...
2  | 1 1 3  7  17   41    99    239     577     1393 ...
3  | 1 1 4 13  43  142   469   1549    5116    16897 ...
4  | 1 1 5 21  89  377  1597   6765   28657   121393 ...
5  | 1 1 6 31 161  836  4341  22541  117046   607771 ...
6  | 1 1 7 43 265 1633 10063  62011  382129  2354785 ...
7  | 1 1 8 57 407 2906 20749 148149 1057792  7552693 ...
8  | 1 1 9 73 593 4817 39129 317849 2581921 20973217 ...
...
		

Crossrefs

Programs

  • Maple
    A135597 := proc(m,c) coeftayl( (m*x-x-1)/(x^2+m*x-1),x=0,c) ; end: for d from 1 to 15 do for c from 0 to d-1 do printf("%d,",A135597(d-c,c)) ; od: od: # R. J. Mathar, Apr 21 2008
  • Mathematica
    a[, 0] = a[, 1] = 1; a[m_, n_] := m*a[m, n-1] + a[m, n-2]; Table[a[m-n+1, n], {m, 0, 11}, {n, 0, m}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)

Formula

O.g.f. row m: (mx-x-1)/(x^2+mx-1). - R. J. Mathar, Apr 21 2008

Extensions

More terms from R. J. Mathar, Apr 21 2008

A051928 Number of independent sets of vertices in graph K_3 X C_n (n > 2).

Original entry on oeis.org

4, 1, 13, 34, 121, 391, 1300, 4285, 14161, 46762, 154453, 510115, 1684804, 5564521, 18378373, 60699634, 200477281, 662131471, 2186871700, 7222746565, 23855111401, 78788080762, 260219353693, 859446141835, 2838557779204, 9375119479441, 30963916217533
Offset: 0

Views

Author

Stephen G Penrice, Dec 19 1999

Keywords

Crossrefs

Row 3 of A287376.

Programs

  • Mathematica
    LinearRecurrence[{2,4,1},{4,1,13},30] (* Harvey P. Dale, Nov 20 2021 *)
  • PARI
    Vec((4-7*x-5*x^2)/((1+x)*(1-3*x-x^2)) + O(x^30)) \\ Colin Barker, May 11 2017

Formula

a(n) = 2*a(n-1) + 4*a(n-2) + a(n-3).
G.f.: (4-7*x-5*x^2)/((1+x)*(1-3*x-x^2)). - Colin Barker, May 22 2012
a(n) = 2*(-1)^n + ((3-sqrt(13))/2)^n + ((3+sqrt(13))/2)^n. - Colin Barker, May 11 2017
a(n) = A006497+2*(-1)^n. - R. J. Mathar, Oct 20 2017

A051929 Number of independent sets of vertices in graph K_4 X C_n (n > 2).

Original entry on oeis.org

5, 1, 21, 73, 325, 1361, 5781, 24473, 103685, 439201, 1860501, 7881193, 33385285, 141422321, 599074581, 2537720633, 10749957125, 45537549121, 192900153621, 817138163593, 3461452808005, 14662949395601, 62113250390421, 263115950957273, 1114577054219525
Offset: 0

Views

Author

Stephen G Penrice, Dec 19 1999

Keywords

Crossrefs

Row 4 of A287376.

Programs

  • PARI
    Vec((5 - 14*x - 7*x^2) / ((1 + x)*(1 - 4*x - x^2)) + O(x^30)) \\ Colin Barker, May 11 2017

Formula

a(n) = 3*a(n-1) + 5*a(n-2) + a(n-3).
From Colin Barker, May 22 2012: (Start)
a(n) = (3*(-1)^n+(2-sqrt(5))^n+(2+sqrt(5))^n).
G.f.: (5 - 14*x - 7*x^2) / ((1 + x)*(1 - 4*x - x^2)).
(End)

Extensions

More terms from James Sellers, Dec 20 1999

A051930 Number of independent sets of vertices in graph K_5 X C_n (n > 2).

Original entry on oeis.org

6, 1, 31, 136, 731, 3771, 19606, 101781, 528531, 2744416, 14250631, 73997551, 384238406, 1995189561, 10360186231, 53796120696, 279340789731, 1450500069331, 7531841136406, 39109705751341, 203080369893131, 1054511555216976, 5475638145978031, 28432702285107111
Offset: 0

Views

Author

Stephen G Penrice, Dec 19 1999

Keywords

Crossrefs

Row 5 of A287376.

Programs

  • Magma
    I:=[6, 1, 31]; [n le 3 select I[n] else 4*Self(n-1)+6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 17 2012
    
  • Mathematica
    LinearRecurrence[{4,6,1},{6,1,31},30] (* Vincenzo Librandi, Jun 17 2012 *)
  • PARI
    Vec((6 - 23*x - 9*x^2) / ((1 + x)*(1 - 5*x - x^2)) + O(x^40)) \\ Colin Barker, Nov 24 2017

Formula

a(n) = 4*a(n-1) + 6*a(n-2) + a(n-3).
G.f.: (6 - 23*x - 9*x^2) / ((1 + x)*(1 - 5*x - x^2)). - Colin Barker, May 22 2012
From Colin Barker, Nov 24 2017: (Start)
a(n) = ((5-sqrt(29))/2)^n + ((5+sqrt(29))/2)^n + 4 for n even.
a(n) = ((5-sqrt(29))/2)^n + ((5+sqrt(29))/2)^n - 4 for n odd.
(End)

Extensions

More terms from James Sellers, Dec 20 1999

A051931 Number of independent sets of nodes in graph K_6 X C_n (n > 2).

Original entry on oeis.org

7, 1, 43, 229, 1447, 8881, 54763, 337429, 2079367, 12813601, 78961003, 486579589, 2998438567, 18477210961, 113861704363, 701647437109, 4323746327047, 26644125399361, 164188498723243, 1011775117738789, 6234839205156007, 38420810348674801, 236759701297204843
Offset: 0

Views

Author

Stephen G Penrice, Dec 19 1999

Keywords

Crossrefs

Row 6 of A287376.

Programs

  • Magma
    I:=[7, 1, 43]; [n le 3 select I[n] else 5*Self(n-1)+7*Self(n-2)+Self(n-3): n in [1..25]]; // Vincenzo Librandi, Apr 27 2012
    
  • Mathematica
    CoefficientList[Series[(7-34*x-11*x^2)/((1+x)*(1-6*x-x^2)),{x,0,30}],x] (* Vincenzo Librandi, Apr 27 2012 *)
  • PARI
    Vec((7 - 34*x - 11*x^2) / ((1 + x)*(1 - 6*x - x^2)) + O(x^40)) \\ Colin Barker, Nov 24 2017

Formula

a(n) = 5*a(n-1) + 7*a(n-2) + a(n-3).
G.f.: (7 - 34*x - 11*x^2) / ((1 + x)*(1 - 6*x - x^2)). - Colin Barker, Apr 18 2012
From Colin Barker, Nov 24 2017: (Start)
a(n) = (3 - sqrt(10))^n + (3 + sqrt(10))^n + 5 for n even.
a(n) = (3 - sqrt(10))^n + (3 + sqrt(10))^n - 5 for n odd.
(End)

Extensions

More terms from James Sellers, Dec 20 1999

A051932 Number of independent sets of nodes in graph K_7 X C_n (n > 2).

Original entry on oeis.org

8, 1, 57, 358, 2605, 18551, 132504, 946037, 6754805, 48229630, 344362257, 2458765387, 17555720008, 125348805401, 894997357857, 6390330310358, 45627309530405, 325781497023151, 2326097788692504, 16608466017870637, 118585359913787005, 846705985414379630
Offset: 0

Views

Author

Stephen G Penrice, Dec 19 1999

Keywords

Crossrefs

Row 7 of A287376.

Programs

  • Mathematica
    LinearRecurrence[{6,8,1},{8,1,57},20] (* Harvey P. Dale, Sep 11 2011 *)
  • PARI
    Vec((8 - 47*x - 13*x^2) / ((1 + x)*(1 - 7*x - x^2)) + O(x^30)) \\ Colin Barker, May 11 2017

Formula

a(n) = 6*a(n-1) + 8*a(n-2) + a(n-3).
G.f.: (13*x^2+47*x-8)/(x^3+8*x^2+6*x-1). - Harvey P. Dale, Sep 11 2011

Extensions

More terms from James Sellers, Dec 20 1999
Corrected by T. D. Noe, Nov 07 2006
Showing 1-7 of 7 results.