cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 70 results. Next

A054545 Number of labeled digraphs on n unisolated nodes (inverse binomial transform of A053763).

Original entry on oeis.org

1, 0, 3, 54, 3861, 1028700, 1067510583, 4390552197234, 72022439672173161, 4721718122762915558520, 1237892818862615769794806443, 1298060597552993036455274183624814, 5444502293926142814638982021027945429501, 91343781554550362267223855965291602454111295060
Offset: 0

Views

Author

Vladeta Jovovic, Apr 09 2000

Keywords

Examples

			2^(n*(n-1))=1+3*C(n,2)+54*C(n,3)+3861*C(n,4)+...
		

Crossrefs

Cf. A006129.

Programs

  • Mathematica
    nn=20;s=Sum[2^(2Binomial[n,2])x^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[ s/Exp[x],{x,0,nn}],x]  (* Geoffrey Critzer, Oct 07 2012 *)
  • PARI
    a(n)={sum(k=0, n, (-1)^(n-k)*binomial(n, k)*2^(k*(k-1)))} \\ Andrew Howroyd, Nov 07 2019

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*2^(k*(k-1)).

Extensions

Terms a(12) and beyond from Andrew Howroyd, Nov 07 2019

A006125 a(n) = 2^(n*(n-1)/2).

Original entry on oeis.org

1, 1, 2, 8, 64, 1024, 32768, 2097152, 268435456, 68719476736, 35184372088832, 36028797018963968, 73786976294838206464, 302231454903657293676544, 2475880078570760549798248448, 40564819207303340847894502572032, 1329227995784915872903807060280344576
Offset: 0

Views

Author

Keywords

Comments

Number of graphs on n labeled nodes; also number of outcomes of labeled n-team round-robin tournaments.
Number of perfect matchings of order n Aztec diamond. [see Speyer]
Number of Gelfand-Zeitlin patterns with bottom row [1,2,3,...,n]. [Zeilberger]
For n >= 1 a(n) is the size of the Sylow 2-subgroup of the Chevalley group A_n(2) (sequence A002884). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001
From James Propp: (Start)
a(n) is the number of ways to tile the region
o-----o
|.....|
o--o.....o--o
|...........|
o--o...........o--o
|.................|
o--o.................o--o
|.......................|
|.......................|
|.......................|
o--o.................o--o
|.................|
o--o...........o--o
|...........|
o--o.....o--o
|.....|
o-----o
(top-to-bottom distance = 2n) with dominoes like either of
o--o o-----o
|..| or |.....|
|..| o-----o
|..|
o--o
(End)
The number of domino tilings in A006253, A004003, A006125 is the number of perfect matchings in the relevant graphs. There are results of Jockusch and Ciucu that if a planar graph has a rotational symmetry then the number of perfect matchings is a square or twice a square - this applies to these 3 sequences. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 12 2001
Let M_n denotes the n X n matrix with M_n(i,j)=binomial(2i,j); then det(M_n)=a(n+1). - Benoit Cloitre, Apr 21 2002
Smallest power of 2 which can be expressed as the product of n distinct numbers (powers of 2), e.g., a(4) = 1024 = 2*4*8*16. Also smallest number which can be expressed as the product of n distinct powers. - Amarnath Murthy, Nov 10 2002
The number of binary relations that are both reflexive and symmetric on an n-element set. - Justin Witt (justinmwitt(AT)gmail.com), Jul 12 2005
The number of symmetric binary relations on an (n-1)-element set. - Peter Kagey, Feb 13 2021
To win a game, you must flip n+1 heads in a row, where n is the total number of tails flipped so far. Then the probability of winning for the first time after n tails is A005329 / A006125. The probability of having won before n+1 tails is A114604 / A006125. - Joshua Zucker, Dec 14 2005
a(n) = A126883(n-1)+1. - Zerinvary Lajos, Jun 12 2007
Equals right border of triangle A158474 (unsigned). - Gary W. Adamson, Mar 20 2009
a(n-1) is the number of simple labeled graphs on n nodes such that every node has even degree. - Geoffrey Critzer, Oct 21 2011
a(n+1) is the number of symmetric binary matrices of size n X n. - Nathan J. Russell, Aug 30 2014
Let T_n be the n X n matrix with T_n(i,j) = binomial(2i + j - 3, j-1); then det(T_n) = a(n). - Tony Foster III, Aug 30 2018
k^(n*(n-1)/2) is the determinant of n X n matrix T_(i,j) = binomial(k*i + j - 3, j-1), in this case k=2. - Tony Foster III, May 12 2019
Let B_n be the n+1 X n+1 matrix with B_n(i, j) = Sum_{m=max(0, j-i)..min(j, n-i)} (binomial(i, j-m) * binomial(n-i, m) * (-1)^m), 0<=i,j<=n. Then det B_n = a(n+1). Also, deleting the first row and any column from B_n results in a matrix with determinant a(n). The matrices B_n have the following property: B_n * [x^n, x^(n-1) * y, x^(n-2) * y^2, ..., y^n]^T = [(x-y)^n, (x-y)^(n-1) * (x+y), (x-y)^(n-2) * (x+y)^2, ..., (x+y)^n]^T. - Nicolas Nagel, Jul 02 2019
a(n) is the number of positive definite (-1,1)-matrices of size n X n. - Eric W. Weisstein, Jan 03 2021
a(n) is the number of binary relations on a labeled n-set that are both total and antisymmetric. - José E. Solsona, Feb 05 2023

Examples

			From _Gus Wiseman_, Feb 11 2021: (Start)
This sequence counts labeled graphs on n vertices. For example, the a(0) = 1 through a(2) = 8 graph edge sets are:
  {}  {}  {}    {}
          {12}  {12}
                {13}
                {23}
                {12,13}
                {12,23}
                {13,23}
                {12,13,23}
This sequence also counts labeled graphs with loops on n - 1 vertices. For example, the a(1) = 1 through a(3) = 8 edge sets are the following. A loop is represented as an edge with two equal vertices.
  {}  {}    {}
      {11}  {11}
            {12}
            {22}
            {11,12}
            {11,22}
            {12,22}
            {11,12,22}
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 547 (Fig. 9.7), 573.
  • G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 178.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 178.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 3, Eq. (1.1.2).
  • J. Propp, Enumeration of matchings: problems and progress, in: New perspectives in geometric combinatorics, L. Billera et al., eds., Mathematical Sciences Research Institute series, vol. 38, Cambridge University Press, 1999.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000568 for the unlabeled analog, A053763, A006253, A004003.
Cf. A001187 (connected labeled graphs).
Cf. A158474. - Gary W. Adamson, Mar 20 2009
Cf. A136652 (log). - Paul D. Hanna, Dec 04 2009
The unlabeled version is A000088, or A002494 without isolated vertices.
The directed version is A002416.
The covering case is A006129.
The version for hypergraphs is A058891, or A016031 without singletons.
Row sums of A143543.
The case of connected edge set is A287689.

Programs

Formula

Sequence is given by the Hankel transform of A001003 (Schroeder's numbers) = 1, 1, 3, 11, 45, 197, 903, ...; example: det([1, 1, 3, 11; 1, 3, 11, 45; 3, 11, 45, 197; 11, 45, 197, 903]) = 2^6 = 64. - Philippe Deléham, Mar 02 2004
a(n) = 2^floor(n^2/2)/2^floor(n/2). - Paul Barry, Oct 04 2004
G.f. satisfies: A(x) = 1 + x*A(2x). - Paul D. Hanna, Dec 04 2009
a(n) = 2 * a(n-1)^2 / a(n-2). - Michael Somos, Dec 30 2012
G.f.: G(0)/x - 1/x, where G(k) = 1 + 2^(k-1)*x/(1 - 1/(1 + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
E.g.f. satisfies A'(x) = A(2x). - Geoffrey Critzer, Sep 07 2013
Sum_{n>=1} 1/a(n) = A299998. - Amiram Eldar, Oct 27 2020
a(n) = s_lambda(1,1,...,1) where s is the Schur polynomial in n variables and lambda is the partition (n,n-1,n-2,...,1). - Leonid Bedratyuk, Feb 06 2022
a(n) = Product_{1 <= j <= i <= n-1} (i + j)/(2*i - 2*j + 1). Cf. A007685. - Peter Bala, Oct 25 2024

Extensions

More terms from Vladeta Jovovic, Apr 09 2000

A002416 a(n) = 2^(n^2).

Original entry on oeis.org

1, 2, 16, 512, 65536, 33554432, 68719476736, 562949953421312, 18446744073709551616, 2417851639229258349412352, 1267650600228229401496703205376, 2658455991569831745807614120560689152, 22300745198530623141535718272648361505980416, 748288838313422294120286634350736906063837462003712
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is the number of n X n (0, 1) matrices.
Also number of directed graphs on n labeled nodes allowing self-loops (cf. A053763).
1/2^(n^2) is the Hankel transform of C(n, n/2)*(1 + (-1)^n)/(2*2^n), or C(2n, n)/4^n with interpolated zeros. - Paul Barry, Sep 27 2007
Hankel transform of A064062. - Philippe Deléham, Nov 19 2007
a(n) is also the order of the semigroup (monoid) of all binary relations on an n-set. - Abdullahi Umar, Sep 14 2008
With offset = 1, a(n) is the number of n X n (0, 1) matrices with an even number of 1's in every row and in every column. - Geoffrey Critzer, May 23 2013
a(n) is the number of functions from an n-set to its power set (by definition of function including the empty function only when n = 0). - Rick L. Shepherd, Dec 27 2014

Examples

			G.f. = 1 + 2*x + 16*x^2 + 512*x^3 + 65536*x^4 + 33554432*x^5 + ...
		

References

  • John M. Howie, Fundamentals of semigroup theory. Oxford: Clarendon Press, (1995). - Abdullahi Umar, Sep 14 2008

Crossrefs

Bisection of A060656.

Programs

Formula

G.f. satisfies: A(x) = 1 + 2*x*A(4x). - Paul D. Hanna, Dec 04 2009
a(n) = 2^n * Sum_{i = 0..C(n, 2)} C(C(n, 2), i)*3^i. The summation conditions on the number of symmetric pairs (a,b) with aA027465, A013610. - Geoffrey Critzer, Nov 05 2024
G.f.: 1 / (1 - 2^1*x / (1 - 2^1*(2^2-1)*x / (1 - 2^5 * x / (1 - 2^3*(2^4-1)*x / (1 - 2^9*x / (1 - 2^5*(2^6-1)*x / ...)))))). - Michael Somos, May 12 2012
a(n) = [x^n] 1/(1 - 2^n*x). - Ilya Gutkovskiy, Oct 10 2017
Sum_{n>=0} 1/a(n) = A319015. - Amiram Eldar, Oct 14 2020

A151374 Number of walks within N^2 (the first quadrant of Z^2) starting at (0, 0), ending on the vertical axis and consisting of 2n steps taken from {(-1, -1), (-1, 0), (1, 1)}.

Original entry on oeis.org

1, 2, 8, 40, 224, 1344, 8448, 54912, 366080, 2489344, 17199104, 120393728, 852017152, 6085836800, 43818024960, 317680680960, 2317200261120, 16992801914880, 125210119372800, 926554883358720, 6882979133521920, 51309480813527040, 383705682605506560, 2877792619541299200
Offset: 0

Author

Manuel Kauers, Nov 18 2008

Keywords

Comments

A052701 shifted one place left. - R. J. Mathar, Dec 13 2008
Expansion of c(2*x), where c(x) is the g.f. of A000108. - Philippe Deléham, Feb 26 2009; simplified by Alexander Burstein, Jul 31 2018
From Joerg Arndt, Oct 22 2012: (Start)
Also the number of strings of length 2*n of two different types of balanced parentheses.
For example, a(1) = 2, since the two possible strings of length 2 are [] and (), a(2) = 8, since the 8 possible strings of length 4 are (()), [()], ([]), [[]], ()(), [](), ()[], and [][].
The number of strings of length 2*n of t different types of balanced parentheses is given by t^n * A000108(n): there are n opening parentheses in the strings, giving t^n choices for the type (the closing parentheses are chosen to match). (End)
Number of Dyck paths of length 2n in which the step U=(1,1) come in 2 colors. - José Luis Ramírez Ramírez, Jan 31 2013
Row sums of triangle in A085880. - Philippe Deléham, Nov 15 2013
Hankel transform is 2^(n+n^2) = A053763(n+1). - Philippe Deléham, Nov 15 2013

Crossrefs

Programs

  • Magma
    [2^n * Catalan(n): n in [0..25]]; // Vincenzo Librandi, Oct 24 2012
    
  • Maple
    A151374_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := 2*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od;
    convert(a,list)end: A151374_list(23); # Peter Luschny, May 19 2011
  • Mathematica
    aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[0, k, 2 n], {k, 0, 2 n}], {n, 0, 25}]
  • PARI
    my(x='x+O('x^66)); Vec(sqrt(2-8*x-2*sqrt(1-8*x))/(4*x)) \\ Joerg Arndt, May 11 2013
    
  • Sage
    def A151374():
        a, n = 1, 1
        while True:
            yield a
            n += 1
            a = a * (8*n - 12) // n
    A = A151374()
    print([next(A) for  in range(24)]) # _Peter Luschny, Nov 30 2016

Formula

a(n) = 2^n * A000108(n). - Philippe Deléham, Feb 01 2009
From Gary W. Adamson, Jul 12 2011: (Start)
a(n) is the top left term in M^n, M = the following infinite square production matrix:
2, 2, 0, 0, 0, 0, ...
2, 2, 2, 0, 0, 0, ...
2, 2, 2, 2, 0, 0, ...
2, 2, 2, 2, 2, 0, ...
2, 2, 2, 2, 2, 2, ...
...
(End)
E.g.f.: KummerM(1/2, 2, 8*x). - Peter Luschny, Aug 26 2012
From Sergei N. Gladkovskii, Apr 05 2013: (Start)
E.g.f.: Let F(x)=Sum_{n>=0} a(n)*x^n/(2*n)!, then F(x) = E(0)/(1-sqrt(x)) where E(k) = 1 - sqrt(x)/(1 - sqrt(x)/(sqrt(x) - (k+1)*(k+2)/2/E(k+1) )); (continued fraction ).
G.f.: 1 + 4*x/(G(0)-4*x) where G(k) = k*(8*x+1) + 4*x + 2 - 2*x*(2*k+3)*(2*k+4)/G(k+1); (continued fraction). (End)
G.f.: sqrt(2-8*x-2*sqrt(1-8*x))/(4*x). - Mark van Hoeij, May 10 2013
G.f.: (1-sqrt(1-8*x))/(4*x). - Philippe Deléham, Nov 15 2013
D-finite with recurrence (n+1)*a(n) + 4*(-2*n+1)*a(n-1) = 0. - R. J. Mathar, Mar 05 2014
a(n) = 4^n*2F1((1-n)/2,-n/2;1;1)/(n+1). - Benedict W. J. Irwin, Jul 12 2016
a(n) ~ 8^n*n^(-3/2)/sqrt(Pi). - Ilya Gutkovskiy, Jul 12 2016
From Peter Bala, Aug 17 2021: (Start)
a(n) = Sum_{k = 0..floor(n/2)} A046521(n,2*k)*Catalan(2*k).
G.f.: A(x) = 1/sqrt(1 - 4*x)*e(x/(1 - 4*x)), where e(x) = (c(x) + c(-x))/2 is the even part of the function c(x) = (1 - sqrt(1 - 4*x))/(2*x), the g.f. of the Catalan numbers A000108. Inversely, (c(x) + c(-x))/2 = 1/sqrt(1 + 4*x)*A(x/(1 + 4*x)).
x*A(x) = Series reversion of (x - 2*x^2). (End)
Sum_{n>=0} 1/a(n) = 68/49 + 96*arctan(1/sqrt(7)) / (49*sqrt(7)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 20/27 - 16*log(2)/81. - Amiram Eldar, Jan 25 2022
G.f.: 1/(1-2*x/(1-2*x/(1-2*x/(1-2*x/(1-2*x/(1-2*x/(1-2*x/(1-2*x/(1-...))))))))) (continued fraction). - Nikolaos Pantelidis, Nov 20 2022
a(n) = 2*Sum_{k=1..n} a(k-1)*a(n-k), a(0) = 1. - Mehdi Naima, Jan 16 2023

A052880 Expansion of e.g.f.: LambertW(1-exp(x))/(1-exp(x)).

Original entry on oeis.org

1, 1, 4, 26, 243, 2992, 45906, 845287, 18182926, 447797646, 12429760889, 384055045002, 13075708703910, 486430792977001, 19632714343389296, 854503410602781782, 39898063449977239323, 1989371798838577172796, 105503454201101084456182, 5930110732782743218645271
Offset: 0

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

A simple grammar.
Also the number of transitive reflexive early confluent binary relations R on n labeled elements. Early confluency means that (xRy and xRz) implies (yRz or zRy) for all x, y, z.

Crossrefs

Row sums of A135313.
Main diagonal of A135302.

Programs

  • Maple
    spec := [S,{B=Set(Z,1 <= card),S=Set(C),C=Prod(B,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    # second Maple program:
    b:= proc(n, m) option remember; `if`(n=0,
         (m+1)^(m-1), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..27);  # Alois P. Heinz, Jul 15 2022
  • Mathematica
    CoefficientList[Series[-LambertW[-E^x+1]/(E^x-1), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
    f[0, ] = 1; f[k, x_] := f[k, x] = Exp[Sum[x^m/m!*f[k-m, x], {m, 1, k}]];
    (* b = A135302 *) b[0, 0] = 1; b[, 0] = 0; b[n, k_] := SeriesCoefficient[ f[k, x], {x, 0, n}]*n!;
    a[n_] := b[n, n];
    a /@ Range[0, 20] (* Jean-François Alcover, Oct 14 2019 *)
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, sum(k=0, m, Stirling2(m, k)*(A+x*O(x^n))^k)*x^m/m!)); n!*polcoeff(A, n)} \\ Paul D. Hanna, Mar 09 2013
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(-lambertw(-exp(x)+1)/(exp(x)-1))) \\ G. C. Greubel, Feb 19 2018

Formula

a(n) = Sum_{k=0..n} Stirling2(n, k)*(k+1)^(k-1). - Vladeta Jovovic, Nov 12 2003
a(n) ~ sqrt(1+exp(1)) * n^(n-1) / (exp(n-1)*(log(1+exp(1))-1)^(n-1/2)). - Vaclav Kotesovec, Nov 27 2012
E.g.f. A(x) satisfies: A(x) = Sum_{n>=0} x^n/n! * Sum_{k=0..n} Stirling2(n,k) * A(x)^k. - Paul D. Hanna, Mar 09 2013
E.g.f. A(x) satisfies: A(x) = exp((exp(x) - 1)*A(x)). - Ilya Gutkovskiy, Apr 04 2019

Extensions

Edited by Alois P. Heinz, Nov 21 2010

A027637 a(n) = Product_{i=1..n} (4^i - 1).

Original entry on oeis.org

1, 3, 45, 2835, 722925, 739552275, 3028466566125, 49615367752825875, 3251543125681443718125, 852369269595510700600441875, 893773106866112632882108339078125, 3748755223447856814435325652920396921875
Offset: 0

Keywords

Comments

The q-analog of double factorials (A000165) evaluated at q=2. - Michael Somos, Sep 12 2014
3^n*5^(floor(n/2))|a(n) for n>=1. - G. C. Greubel, Nov 21 2015
Given probability p = 1/4^n that an outcome will occur at the n-th stage of an infinite process, then starting at n=1, 1-a(n)/A053763(n+1) is the probability that the outcome has occurred up to and including the n-th iteration. The limiting ratio is 1-A100221 ~ 0.3114625. - Bob Selcoe, Mar 01 2016

Crossrefs

Cf. A000165.
Sequences of the form q-Pochhammer(n, q, q): A005329 (q=2), A027871 (q=3), this sequence (q=4), A027872 (q=5), A027873 (q=6), A027875 (q=7), A027876 (q=8), A027877 (q=9), A027878 (q=10), A027879 (q=11), A027880 (q=12).

Programs

  • Magma
    [1] cat [&*[4^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
    
  • Maple
    A027637 := proc(n)
        mul( 4^i-1,i=1..n) ;
    end proc:
    seq(A027637(n),n=0..8) ;
  • Mathematica
    A027637 = Table[Product[4^i - 1, {i, n}], {n, 0, 9}] (* Alonso del Arte, Nov 14 2011 *)
    a[ n_] := If[ n < 0, 0, Product[ (q^(2 k) - 1) / (q - 1), {k, n}] /. q -> 2]; (* Michael Somos, Sep 12 2014 *)
    Abs@QPochhammer[4, 4, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
  • PARI
    a(n) = prod(i=1, n, 4^i-1); \\ Michel Marcus, Nov 21 2015
    
  • SageMath
    from sage.combinat.q_analogues import q_pochhammer
    def A027637(n): return (-1)^n*q_pochhammer(n, 4, 4)
    [A027637(n) for n in (0..15)] # G. C. Greubel, Aug 04 2022

Formula

a(n) ~ c * 2^(n*(n+1)), where c = Product_{k>=1} (1-1/4^k) = A100221 = 0.688537537120339715456514357293508184675549819378... . - Vaclav Kotesovec, Nov 21 2015
a(n) = 4^(binomial(n+1,2))*(1/4;1/4){n} = (4; 4){n}, where (a;q){n} is the q-Pochhammer symbol. - _G. C. Greubel, Dec 24 2015
G.f.: Sum_{n>=0} 4^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 4^k*x). - Ilya Gutkovskiy, May 22 2017
Sum_{n>=0} (-1)^n/a(n) = A100221. - Amiram Eldar, May 07 2023

A003027 Number of weakly connected digraphs with n labeled nodes.

Original entry on oeis.org

1, 3, 54, 3834, 1027080, 1067308488, 4390480193904, 72022346388181584, 4721717643249254751360, 1237892809110149882059440768, 1298060596773261804821355107253504, 5444502293680983802677246555274553481984, 91343781554246596956424128384394531707099632640
Offset: 1

Keywords

References

  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The unlabeled case is A003085.
Row sums of A062735.
Cf. A053763 (not necessarily connected), A003030 (strongly connected).

Programs

  • Maple
    b:= n-> 2^(n^2-n):
    a:= proc(n) option remember; local k; `if`(n=0, 1,
          b(n)- add(k*binomial(n,k) *b(n-k)*a(k), k=1..n-1)/n)
        end:
    seq(a(n), n=1..20);  # Alois P. Heinz, Oct 21 2012
  • Mathematica
    Range[0, 20]! CoefficientList[Series[D[1 + Log[Sum[2^(n^2 - n) x^n/n!, {n, 0, 20}]], x], {x, 0,20}], x]
    c[n_]:=2^(n(n-1))-Sum[k Binomial[n,k]c[k] 2^((n-k)(n-k-1)),{k,1,n-1}]/n;c[0]=1;Table[c[i],{i,0,20}]  (* Geoffrey Critzer, Oct 24 2012 *)
  • PARI
    v=Vec(log(sum(n=0, default(seriesprecision), 2^(n^2-n)*x^n/n!))); for(i=1, #v, v[i]*=(i-1)!); v \\ Charles R Greathouse IV, Feb 14 2011
    
  • Sage
    b = lambda n: 2^(n^2-n)
    @cached_function
    def A003027(n):
        return b(n) - sum(k*binomial(n, k)*b(n-k)*A003027(k) for k in (1..n-1)) / n
    [A003027(n) for n in (1..13)] # Peter Luschny, Jan 18 2016

Formula

a(n) = A062738(n)/2^n, since binary relations = digraphs with loops. - Ralf Stephan and Vladeta Jovovic, Mar 24 2004
E.g.f.: log(sum n>=0, 2^(n^2-n)*x^n/n!).
a(n) = A053763(n) - (1/n) * Sum_{k=1..n-1} k*C(n,k)*a(k)*A053763(n-k). - Geoffrey Critzer, Oct 24 2012

Extensions

Corrected and extended by Vladeta Jovovic, Goran Kilibarda

A053291 Nonsingular n X n matrices over GF(4).

Original entry on oeis.org

1, 3, 180, 181440, 2961100800, 775476766310400, 3251791214634074112000, 218210695042457748180566016000, 234298374547168764346587444978647040000, 4025200069765920285793155323595159699896401920000, 1106437515026051855463365435310419366987397763763798016000000
Offset: 0

Author

Stephen G Penrice, Mar 04 2000

Keywords

Programs

  • Magma
    [1] cat [&*[(4^n - 4^k): k in [0..n-1]]: n in [1..8]]; // Bruno Berselli, Jan 28 2013
    
  • Mathematica
    Table[Product[4^n - 4^k, {k,0,n-1}], {n,0,10}] (* Geoffrey Critzer, Jan 26 2013 *)
  • PARI
    for(n=0,10, print1(prod(k=0,n-1, 4^n - 4^k), ", ")) \\ G. C. Greubel, May 31 2018

Formula

a(n) = (4^n - 1)*(4^n - 4)*...*(4^n - 4^(n-1)).
a(n) = A053763(n)*A027637(n). - Bruno Berselli, Jan 30 2013
From Amiram Eldar, Jul 06 2025: (Start)
a(n) = Product_{k=1..n} A115490(k).
a(n) ~ c * 4^(n^2), where c = A100221. (End)

Extensions

More terms from Vladeta Jovovic, Mar 16 2000

A053764 a(n) = 3^(n^2 - n).

Original entry on oeis.org

1, 1, 9, 729, 531441, 3486784401, 205891132094649, 109418989131512359209, 523347633027360537213511521, 22528399544939174411840147874772641, 8727963568087712425891397479476727340041449, 30432527221704537086371993251530170531786747066637049, 955004950796825236893190701774414011919935138974343129836853841, 269721605590607563262106870407286853611938890184108047911269431464974473521
Offset: 0

Author

Stephen G Penrice, Mar 29 2000

Keywords

Comments

Number of nilpotent n X n matrices X over GF(3), that is, the number of n X n matrices X over GF(3) satisfying X^k = 0 for some k >= 1.
More generally, Fine and Herstein prove that the probability that an n X n matrix over GF(p^m) is nilpotent is 1/p^(mn) and the probability that an n X n matrix over Z/mZ is nilpotent is 1/k^n, where k is the product of the distinct prime factors of m.
Is this the same sequence (apart from the initial term) as A053854? - Philippe Deléham, Dec 09 2007
[1,9,729,531441,3486784401,...] is the Hankel transform of A005159. - Philippe Deléham, Dec 10 2007

Crossrefs

Programs

Formula

Sequence given by the Hankel transform (see A001906 for definition) of A082181 = {1, 1, 10, 109, 1270, 15562, 198100, ...}; example: det([1, 1, 10, 109; 1, 10, 109, 1270; 10, 109, 1270, 15562; 109, 1270, 15562, 198100]) = 9^6 = 531441. - Philippe Deléham, Aug 20 2005

Extensions

More terms from James Sellers, Apr 08 2000

A326225 Number of Hamiltonian unlabeled n-vertex digraphs (without loops).

Original entry on oeis.org

0, 1, 1, 4, 61, 3725, 844141, 626078904
Offset: 0

Author

Gus Wiseman, Jun 15 2019

Keywords

Comments

A digraph is Hamiltonian if it contains a directed cycle passing through every vertex exactly once.

Examples

			Non-isomorphic representatives of the a(3) = 4 digraph edge-sets:
  {12,23,31}
  {12,13,21,32}
  {12,13,21,23,31}
  {12,13,21,23,31,32}
		

Crossrefs

The labeled case is A326219.
The case with loops is A326226.
The undirected case is A003216.
Non-Hamiltonian unlabeled digraphs (without loops) are A326222.

Extensions

a(5)-a(7) from Sean A. Irvine, Jun 16 2019
Showing 1-10 of 70 results. Next