A054545
Number of labeled digraphs on n unisolated nodes (inverse binomial transform of A053763).
Original entry on oeis.org
1, 0, 3, 54, 3861, 1028700, 1067510583, 4390552197234, 72022439672173161, 4721718122762915558520, 1237892818862615769794806443, 1298060597552993036455274183624814, 5444502293926142814638982021027945429501, 91343781554550362267223855965291602454111295060
Offset: 0
2^(n*(n-1))=1+3*C(n,2)+54*C(n,3)+3861*C(n,4)+...
-
nn=20;s=Sum[2^(2Binomial[n,2])x^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[ s/Exp[x],{x,0,nn}],x] (* Geoffrey Critzer, Oct 07 2012 *)
-
a(n)={sum(k=0, n, (-1)^(n-k)*binomial(n, k)*2^(k*(k-1)))} \\ Andrew Howroyd, Nov 07 2019
A006125
a(n) = 2^(n*(n-1)/2).
Original entry on oeis.org
1, 1, 2, 8, 64, 1024, 32768, 2097152, 268435456, 68719476736, 35184372088832, 36028797018963968, 73786976294838206464, 302231454903657293676544, 2475880078570760549798248448, 40564819207303340847894502572032, 1329227995784915872903807060280344576
Offset: 0
From _Gus Wiseman_, Feb 11 2021: (Start)
This sequence counts labeled graphs on n vertices. For example, the a(0) = 1 through a(2) = 8 graph edge sets are:
{} {} {} {}
{12} {12}
{13}
{23}
{12,13}
{12,23}
{13,23}
{12,13,23}
This sequence also counts labeled graphs with loops on n - 1 vertices. For example, the a(1) = 1 through a(3) = 8 edge sets are the following. A loop is represented as an edge with two equal vertices.
{} {} {}
{11} {11}
{12}
{22}
{11,12}
{11,22}
{12,22}
{11,12,22}
(End)
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 547 (Fig. 9.7), 573.
- G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 178.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
- F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 178.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 3, Eq. (1.1.2).
- J. Propp, Enumeration of matchings: problems and progress, in: New perspectives in geometric combinatorics, L. Billera et al., eds., Mathematical Sciences Research Institute series, vol. 38, Cambridge University Press, 1999.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 0..50
- F. Ardila and R. P. Stanley, Tilings, arXiv:math/0501170 [math.CO], 2005.
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - From _N. J. A. Sloane_, Oct 08 2012
- Anders Björner and Richard P. Stanley, A combinatorial miscellany, 2010.
- Tobias Boege and Thomas Kahle, Construction Methods for Gaussoids, arXiv:1902.11260 [math.CO], 2019.
- Taylor Brysiewicz and Fulvio Gesmundo, The Degree of Stiefel Manifolds, arXiv:1909.10085 [math.AG], 2019.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Mihai Ciucu, Perfect matchings of cellular graphs, J. Algebraic Combin., 5 (1996) 87-103.
- Mihai Ciucu, Enumeration of perfect matchings in graphs with reflective symmetry, J. Combin. Theory Ser. A 77 (1997), no. 1, 67-97.
- Thierry de la Rue and Élise Janvresse, Pavages aléatoires par touillage de dominos, Images des Mathématiques, CNRS, 2023. In French.
- Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp, Alternating sign matrices and domino tilings. Part I, Journal of Algebraic Combinatorics 1-2, 111-132 (1992).
- Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp, Alternating sign matrices and domino tilings. Part II, Journal of Algebraic Combinatorics 1-3, 219-234 (1992).
- Sen-Peng Eu and Tung-Shan Fu, A simple proof of the Aztec diamond theorem, arXiv:math/0412041 [math.CO], 2004.
- D. Grensing, I. Carlsen, and H.-Chr. Zapp, Some exact results for the dimer problem on plane lattices with non-standard boundaries, Phil. Mag. A, 41:5 (1980), 777-781.
- Harald Helfgott and Ira M. Gessel, Enumeration of tilings of diamonds and hexagons with defects, arXiv:math/9810143 [math.CO], 1998.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Pakawut Jiradilok, Some Combinatorial Formulas Related to Diagonal Ramsey Numbers, arXiv:2404.02714 [math.CO], 2024. See p. 19.
- William Jockusch, Perfect matchings and perfect squares J. Combin. Theory Ser. A 67 (1994), no. 1, 100-115.
- Eric H. Kuo, Applications of graphical condensation for enumerating matchings and tilings, Theoretical Computer Science, Vol. 319, No. 1-3 (2004), pp. 29-57, arXiv preprint, arXiv:math/0304090 [math.CO], 2003.
- C. L. Mallows & N. J. A. Sloane, Emails, May 1991
- W. H. Mills, David P. Robbins, and Howard Rumsey, Jr., Alternating sign matrices and descending plane partitions, J. Combin. Theory Ser. A 34 (1983), 340-359.
- Götz Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- James Propp, Enumeration of matchings: problems and progress, in L. J. Billera et al. (eds.), New Perspectives in Algebraic Combinatorics
- James Propp, Enumeration of matchings: problems and progress, arXiv:math/9904150 [math.CO], 1999.
- James Propp, Lessons I learned from Richard Stanley, arXiv preprint [math.CO], 2015.
- James Propp and R. P. Stanley, Domino tilings with barriers, arXiv:math/9801067 [math.CO], 1998.
- Steven S. Skiena, Generating graphs.
- David E. Speyer, Perfect matchings and the octahedron recurrence, Journal of Algebraic Combinatorics, Vol. 25, No. 3 (2007), pp. 309-348, arXiv preprint, arXiv:math/0402452 [math.CO], 2004.
- Jan Tóth and Ondřej Kuželka, Complexity of Weighted First-Order Model Counting in the Two-Variable Fragment with Counting Quantifiers: A Bound to Beat, arXiv:2404.12905 [cs.LO], 2024. See p. 24.
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- Eric Weisstein's World of Mathematics, Connected Graph.
- Eric Weisstein's World of Mathematics, Labeled Graph.
- Eric Weisstein's World of Mathematics, Symmetric Matrix.
- Doron Zeilberger, Dave Robbins's Art of Guessing, Adv. in Appl. Math. 34 (2005), 939-954.
- Index entries for sequences related to dominoes
Cf.
A001187 (connected labeled graphs).
The unlabeled version is
A000088, or
A002494 without isolated vertices.
The version for hypergraphs is
A058891, or
A016031 without singletons.
The case of connected edge set is
A287689.
-
[2^(n*(n-1) `div` 2) | n <- [0..20]] -- José E. Solsona, Feb 05 2023
-
[2^(n*(n-1) div 2): n in [0..20]]; // Vincenzo Librandi, Jul 03 2019
-
Join[{1}, 2^Accumulate[Range[0, 20]]] (* Harvey P. Dale, May 09 2013 *)
Table[2^(n (n - 1) / 2), {n, 0, 20}] (* Vincenzo Librandi, Jul 03 2019 *)
Table[2^Binomial[n, 2], {n, 0, 15}] (* Eric W. Weisstein, Jan 03 2021 *)
2^Binomial[Range[0, 15], 2] (* Eric W. Weisstein, Jan 03 2021 *)
Prepend[Table[Count[Tuples[{0, 1}, {n, n}], ?SymmetricMatrixQ], {n, 5}], 1] (* _Eric W. Weisstein, Jan 03 2021 *)
Prepend[Table[Count[Tuples[{-1, 1}, {n, n}], ?PositiveDefiniteMatrixQ], 1], {n, 4}] (* _Eric W. Weisstein, Jan 03 2021 *)
-
A006125(n):=2^(n*(n-1)/2)$ makelist(A006125(n), n, 0, 30); /* Martin Ettl, Oct 24 2012 */
-
a(n)=1<Charles R Greathouse IV, Jun 15 2011
-
def A006125(n): return 1<<(n*(n-1)>>1) # Chai Wah Wu, Nov 09 2023
A002416
a(n) = 2^(n^2).
Original entry on oeis.org
1, 2, 16, 512, 65536, 33554432, 68719476736, 562949953421312, 18446744073709551616, 2417851639229258349412352, 1267650600228229401496703205376, 2658455991569831745807614120560689152, 22300745198530623141535718272648361505980416, 748288838313422294120286634350736906063837462003712
Offset: 0
G.f. = 1 + 2*x + 16*x^2 + 512*x^3 + 65536*x^4 + 33554432*x^5 + ...
- John M. Howie, Fundamentals of semigroup theory. Oxford: Clarendon Press, (1995). - Abdullahi Umar, Sep 14 2008
- Vincenzo Librandi, Table of n, a(n) for n = 0..33
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Theresia Eisenkölbl, 2-Enumerations of halved alternating sign matrices, arXiv:math/0106038 [math.CO], 2001.
- Theresia Eisenkölbl, 2-Enumerations of halved alternating sign matrices, Séminaire Lotharingien Combin. 46, (2001), Article B46c, 11 pp.
- Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seqs., Vol. 6, 2003.
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68.
- S. R. Kannan and Rajesh Kumar Mohapatra, Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques, arXiv:1909.13678 [math.GM], 2019.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Götz Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- Eric Weisstein's World of Mathematics, 01-Matrix.
- Index to divisibility sequences
-
List([0..15], n-> 2^(n^2) ); # G. C. Greubel, Jul 03 2019
-
[2^(n^2): n in [0..15]]; // Vincenzo Librandi, May 13 2011
-
Table[2^(n^2), {n,0,15}] (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
-
a(n)=polresultant((x-1)^n,(x+1)^n,x) \\ Ralf Stephan
-
a(n)=2^n^2 \\ Charles R Greathouse IV, Jun 23 2021
-
[2^(n^2) for n in (0..15)] # G. C. Greubel, Jul 03 2019
A151374
Number of walks within N^2 (the first quadrant of Z^2) starting at (0, 0), ending on the vertical axis and consisting of 2n steps taken from {(-1, -1), (-1, 0), (1, 1)}.
Original entry on oeis.org
1, 2, 8, 40, 224, 1344, 8448, 54912, 366080, 2489344, 17199104, 120393728, 852017152, 6085836800, 43818024960, 317680680960, 2317200261120, 16992801914880, 125210119372800, 926554883358720, 6882979133521920, 51309480813527040, 383705682605506560, 2877792619541299200
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Paul Barry, Generalized Eulerian Triangles and Some Special Production Matrices, arXiv:1803.10297 [math.CO], 2018.
- Paul Barry, Riordan arrays, the A-matrix, and Somos 4 sequences, arXiv:1912.01126 [math.CO], 2019.
- Mireille Bousquet-Mélou and Marni Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.
- J. Bouttier, P. Di Francesco and E. Guitter, Statistics of planar graphs viewed from a vertex: a study via labeled trees, Nucl. Phys. B, Vol. 675, No. 3 (2003), pp. 631-660. See p. 631, eq. (3.3).
- Marek Bożejko, Maciej Dołęga, Wiktor Ejsmont and Światosław R. Gal, Reflection length with two parameters in the asymptotic representation theory of type B/C and applications, arXiv:2104.14530 [math.RT], 2021.
- Vedran Čačić and Vjekoslav Kovač, On the fraction of IL formulas that have normal forms, arXiv:1309.3408 [math.LO], 2013.
- Stefano Capparelli and Alberto Del Fra, Dyck Paths, Motzkin Paths, and the Binomial Transform, Journal of Integer Sequences, Vol. 18 (2015), Article 15.8.5.
- Grégory Chatel and Vincent Pilaud, Cambrian Hopf algebras, Adv. Math. 311, 598-633 (2017). Prop. 3.
- Zhi Chen and Hao Pan, Identities involving weighted Catalan-Schröder and Motzkin Paths, arXiv:1608.02448 [math.CO], 2016. See eq. (1.13), a=b=2.
- Nicolas Crampe, Julien Gaboriaud and Luc Vinet, Racah algebras, the centralizer Z_n(sl_2) and its Hilbert-Poincaré series, arXiv:2105.01086 [math.RT], 2021.
- Hsien-Kuei Hwang, Mihyun Kang and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- Bradley Robert Jones, On tree hook length formulas, Feynman rules and B-series, Master's thesis, Simon Fraser University, 2014.
- Georg Muntingh, Implicit Divided Differences, Little Schröder Numbers and Catalan Numbers, J. Int. Seq., Vol. 15 (2012), Article 12.6.5; arXiv preprint, arXiv:1204.2709 [math.CO], 2012.
- L. Poulain d'Andecy, Centralisers and Hecke algebras in Representation Theory, with applications to Knots and Physics, arXiv:2304.00850 [math.RT], 2023. See p. 64.
-
[2^n * Catalan(n): n in [0..25]]; // Vincenzo Librandi, Oct 24 2012
-
A151374_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 2*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od;
convert(a,list)end: A151374_list(23); # Peter Luschny, May 19 2011
-
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[0, k, 2 n], {k, 0, 2 n}], {n, 0, 25}]
-
my(x='x+O('x^66)); Vec(sqrt(2-8*x-2*sqrt(1-8*x))/(4*x)) \\ Joerg Arndt, May 11 2013
-
def A151374():
a, n = 1, 1
while True:
yield a
n += 1
a = a * (8*n - 12) // n
A = A151374()
print([next(A) for in range(24)]) # _Peter Luschny, Nov 30 2016
A052880
Expansion of e.g.f.: LambertW(1-exp(x))/(1-exp(x)).
Original entry on oeis.org
1, 1, 4, 26, 243, 2992, 45906, 845287, 18182926, 447797646, 12429760889, 384055045002, 13075708703910, 486430792977001, 19632714343389296, 854503410602781782, 39898063449977239323, 1989371798838577172796, 105503454201101084456182, 5930110732782743218645271
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Set(Z,1 <= card),S=Set(C),C=Prod(B,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
# second Maple program:
b:= proc(n, m) option remember; `if`(n=0,
(m+1)^(m-1), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..27); # Alois P. Heinz, Jul 15 2022
-
CoefficientList[Series[-LambertW[-E^x+1]/(E^x-1), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
f[0, ] = 1; f[k, x_] := f[k, x] = Exp[Sum[x^m/m!*f[k-m, x], {m, 1, k}]];
(* b = A135302 *) b[0, 0] = 1; b[, 0] = 0; b[n, k_] := SeriesCoefficient[ f[k, x], {x, 0, n}]*n!;
a[n_] := b[n, n];
a /@ Range[0, 20] (* Jean-François Alcover, Oct 14 2019 *)
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, sum(k=0, m, Stirling2(m, k)*(A+x*O(x^n))^k)*x^m/m!)); n!*polcoeff(A, n)} \\ Paul D. Hanna, Mar 09 2013
-
x='x+O('x^30); Vec(serlaplace(-lambertw(-exp(x)+1)/(exp(x)-1))) \\ G. C. Greubel, Feb 19 2018
A027637
a(n) = Product_{i=1..n} (4^i - 1).
Original entry on oeis.org
1, 3, 45, 2835, 722925, 739552275, 3028466566125, 49615367752825875, 3251543125681443718125, 852369269595510700600441875, 893773106866112632882108339078125, 3748755223447856814435325652920396921875
Offset: 0
Sequences of the form q-Pochhammer(n, q, q):
A005329 (q=2),
A027871 (q=3), this sequence (q=4),
A027872 (q=5),
A027873 (q=6),
A027875 (q=7),
A027876 (q=8),
A027877 (q=9),
A027878 (q=10),
A027879 (q=11),
A027880 (q=12).
-
[1] cat [&*[4^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
A027637 := proc(n)
mul( 4^i-1,i=1..n) ;
end proc:
seq(A027637(n),n=0..8) ;
-
A027637 = Table[Product[4^i - 1, {i, n}], {n, 0, 9}] (* Alonso del Arte, Nov 14 2011 *)
a[ n_] := If[ n < 0, 0, Product[ (q^(2 k) - 1) / (q - 1), {k, n}] /. q -> 2]; (* Michael Somos, Sep 12 2014 *)
Abs@QPochhammer[4, 4, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
-
a(n) = prod(i=1, n, 4^i-1); \\ Michel Marcus, Nov 21 2015
-
from sage.combinat.q_analogues import q_pochhammer
def A027637(n): return (-1)^n*q_pochhammer(n, 4, 4)
[A027637(n) for n in (0..15)] # G. C. Greubel, Aug 04 2022
A003027
Number of weakly connected digraphs with n labeled nodes.
Original entry on oeis.org
1, 3, 54, 3834, 1027080, 1067308488, 4390480193904, 72022346388181584, 4721717643249254751360, 1237892809110149882059440768, 1298060596773261804821355107253504, 5444502293680983802677246555274553481984, 91343781554246596956424128384394531707099632640
Offset: 1
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Cf.
A053763 (not necessarily connected),
A003030 (strongly connected).
-
b:= n-> 2^(n^2-n):
a:= proc(n) option remember; local k; `if`(n=0, 1,
b(n)- add(k*binomial(n,k) *b(n-k)*a(k), k=1..n-1)/n)
end:
seq(a(n), n=1..20); # Alois P. Heinz, Oct 21 2012
-
Range[0, 20]! CoefficientList[Series[D[1 + Log[Sum[2^(n^2 - n) x^n/n!, {n, 0, 20}]], x], {x, 0,20}], x]
c[n_]:=2^(n(n-1))-Sum[k Binomial[n,k]c[k] 2^((n-k)(n-k-1)),{k,1,n-1}]/n;c[0]=1;Table[c[i],{i,0,20}] (* Geoffrey Critzer, Oct 24 2012 *)
-
v=Vec(log(sum(n=0, default(seriesprecision), 2^(n^2-n)*x^n/n!))); for(i=1, #v, v[i]*=(i-1)!); v \\ Charles R Greathouse IV, Feb 14 2011
-
b = lambda n: 2^(n^2-n)
@cached_function
def A003027(n):
return b(n) - sum(k*binomial(n, k)*b(n-k)*A003027(k) for k in (1..n-1)) / n
[A003027(n) for n in (1..13)] # Peter Luschny, Jan 18 2016
A053291
Nonsingular n X n matrices over GF(4).
Original entry on oeis.org
1, 3, 180, 181440, 2961100800, 775476766310400, 3251791214634074112000, 218210695042457748180566016000, 234298374547168764346587444978647040000, 4025200069765920285793155323595159699896401920000, 1106437515026051855463365435310419366987397763763798016000000
Offset: 0
-
[1] cat [&*[(4^n - 4^k): k in [0..n-1]]: n in [1..8]]; // Bruno Berselli, Jan 28 2013
-
Table[Product[4^n - 4^k, {k,0,n-1}], {n,0,10}] (* Geoffrey Critzer, Jan 26 2013 *)
-
for(n=0,10, print1(prod(k=0,n-1, 4^n - 4^k), ", ")) \\ G. C. Greubel, May 31 2018
A053764
a(n) = 3^(n^2 - n).
Original entry on oeis.org
1, 1, 9, 729, 531441, 3486784401, 205891132094649, 109418989131512359209, 523347633027360537213511521, 22528399544939174411840147874772641, 8727963568087712425891397479476727340041449, 30432527221704537086371993251530170531786747066637049, 955004950796825236893190701774414011919935138974343129836853841, 269721605590607563262106870407286853611938890184108047911269431464974473521
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..46
- N. J. Fine and I. N. Herstein, The probability that a matrix be nilpotent, Illinois J. Math., 2 (1958), 499-504.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- M. Gerstenhaber, On the number of nilpotent matrices with coefficients in a finite field, Illinois J. Math., Vol. 5 (1961), 330-333.
A326225
Number of Hamiltonian unlabeled n-vertex digraphs (without loops).
Original entry on oeis.org
0, 1, 1, 4, 61, 3725, 844141, 626078904
Offset: 0
Non-isomorphic representatives of the a(3) = 4 digraph edge-sets:
{12,23,31}
{12,13,21,32}
{12,13,21,23,31}
{12,13,21,23,31,32}
Non-Hamiltonian unlabeled digraphs (without loops) are
A326222.
Showing 1-10 of 70 results.
Comments