A052701
a(0) = 0; for n >= 1, a(n) = 2^(n-1)*C(n-1), where C(n) = A000108(n) Catalan numbers, n>0.
Original entry on oeis.org
0, 1, 2, 8, 40, 224, 1344, 8448, 54912, 366080, 2489344, 17199104, 120393728, 852017152, 6085836800, 43818024960, 317680680960, 2317200261120, 16992801914880, 125210119372800, 926554883358720, 6882979133521920
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Jean-Luc Baril, Sergey Kirgizov, and Mehdi Naima, A lattice on Dyck paths close to the Tamari lattice, arXiv:2309.00426 [math.CO], 2023.
- M. Bousquet-Mélou, Limit laws for embedded trees, arXiv:math/0501266 [math.CO], 2005.
- Marek Bożejko, Maciej Dołęga, Wiktor Ejsmont, and Światosław R. Gal, Reflection length with two parameters in the asymptotic representation theory of type B/C and applications, arXiv:2104.14530 [math.RT], 2021.
- F. Chapoton and S. Giraudo, Enveloping operads and bicoloured noncrossing configurations, arXiv:1310.4521 [math.CO], 2013.
- Ivan Geffner and Marc Noy, Counting Outerplanar Maps, Electronic Journal of Combinatorics, Vol. 24, No. 2 (2017), Article P2.3.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 651.
- V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., Vol. 36, No.4 (2006), pp. 364-387.
- Vincent Pilaud and V. Pons, Permutrees, arXiv preprint arXiv:1606.09643 [math.CO], 2016-2017.
- Index to sequences related to reversion of series.
-
spec := [S,{B=Union(C,Z),S=Union(B,C),C=Prod(S,S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
InverseSeries[Series[y-2*y^2, {y, 0, 24}], x] (* then A(x)=y(x) *) (* Len Smiley, Apr 07 2000 *)
Join[{0},Table[2^n CatalanNumber[n],{n,0,30}]] (* Harvey P. Dale, Aug 29 2015 *)
-
a(n)=if(n<1,0,2^(n-1)*(2*n-2)!/(n-1)!/n!)
-
a(n)=if(n<1,0,polcoeff(serreverse(x-2*x^2+x*O(x^n)),n))
-
a(n)=if(n<1,0,polcoeff(2*x/(1+sqrt(1-8*x+O(x^n))),n))
Better description from Claude Lenormand (claude.lenormand(AT)free.fr), Mar 19 2001
A162326
Let a(0) = a(1) = 1, and n*a(n) = 2*(-7+5*n)*a(n-1) + 9*(2-n)*a(n-2) for n >= 2.
Original entry on oeis.org
1, 1, 3, 13, 71, 441, 2955, 20805, 151695, 1135345, 8671763, 67320573, 529626839, 4213228969, 33833367963, 273892683573, 2232832964895, 18314495896545, 151037687326755, 1251606057754605, 10416531069771111, 87029307323766681
Offset: 0
Write [0...n]y for [x0,...,xn]y and [0...s,0...t]g for [x0,...,xs;y0,...,yt]g.
For n = 1 one finds 1 term, [01]y = -[01;1]g/[0;01]g.
For n = 2 one finds 3 terms, [012]y = -[012;2]g/[0;02]g + ([01;12]g[12;2]g)/([0;02]g[1;12]g) - ([0;012]g[01;1]g[12;2]g)/([0;02]g[0;01]g[1;12]g).
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Georg Muntingh, Implicit Divided Differences, Little Schroeder Numbers, and Catalan Numbers, J. Integ. Seqs., Vol. 15 (2012), Article 12.6.5.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 98.
Cf.
A172003, which is a generalization to bivariate implicit functions.
Cf.
A003262, which is the analogous sequence for implicit derivatives, and
A172004 for its generalization to bivariate implicit functions.
-
m:=20; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (5-Sqrt((1-9*x)/(1-x)))/4 )); // G. C. Greubel, Feb 07 2019
-
a:=[1,3]; for n in [3..21] do Append(~a,(2*(-7+5*n)*a[n-1] + 9*(2-n)*a[n-2]) div n); end for ; [1] cat a; // Marius A. Burtea, Jan 20 2020
-
CoefficientList[Series[(5-Sqrt[(1-9*x)/(1-x)])/4, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
-
a(n):=if n=0 then 1 else sum(binomial(n,k)*2^(n-k-1)*binomial(2*n-2*k-2,n-k-1),k,0,n)/n; /* Vladimir Kruchinin, Mar 13 2016 */
-
a(n) = if(n<2, 1, (2*(-7+5*n)*a(n-1) + 9*(2-n)*a(n-2))/n);
vector(25, n, a(n-1)) \\ Altug Alkan, Oct 06 2015
-
my(x='x+O('x^20)); Vec((5-sqrt((1-9*x)/(1-x)))/4) \\ G. C. Greubel, Feb 07 2019
-
L = [1, 1]
for n in range(2,22):
L.append( ((-14 + 10*n)*L[-1] + (18-9*n)*L[-2])//n )
print(L)
# Georg Muntingh, Jul 19 2012
-
((5-sqrt((1-9*x)/(1-x)))/4).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Feb 07 2019
A085880
Triangle T(n,k) read by rows: multiply row n of Pascal's triangle (A007318) by the n-th Catalan number (A000108).
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 5, 15, 15, 5, 14, 56, 84, 56, 14, 42, 210, 420, 420, 210, 42, 132, 792, 1980, 2640, 1980, 792, 132, 429, 3003, 9009, 15015, 15015, 9009, 3003, 429, 1430, 11440, 40040, 80080, 100100, 80080, 40040, 11440, 1430, 4862, 43758, 175032, 408408, 612612, 612612, 408408, 175032, 43758, 4862
Offset: 0
Triangle starts:
[ 1] 1;
[ 2] 1, 1;
[ 3] 2, 4, 2;
[ 4] 5, 15, 15, 5;
[ 5] 14, 56, 84, 56, 14;
[ 6] 42, 210, 420, 420, 210, 42;
[ 7] 132, 792, 1980, 2640, 1980, 792, 132;
[ 8] 429, 3003, 9009, 15015, 15015, 9009, 3003, 429;
[ 9] 1430, 11440, 40040, 80080, 100100, 80080, 40040, 11440, 1430;
[10] 4862, 43758, 175032, 408408, 612612, 612612, 408408, 175032, 43758, 4862;
...
-
Flat(List([0..10], n-> List([0..n], k-> Binomial(n,k)*Binomial(2*n,n)/( n+1) ))); # G. C. Greubel, Feb 07 2020
-
[Binomial(n,k)*Catalan(n): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 07 2020
-
seq(seq(binomial(n, k)*binomial(2*n, n)/(n+1), k = 0..n), n = 0..10); # G. C. Greubel, Feb 07 2020
-
Table[Binomial[n, k]*CatalanNumber[n], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 07 2020 *)
-
tabl(nn) = {for (n=0, nn, c = binomial(2*n,n)/(n+1); for (k=0, n, print1(c*binomial(n, k), ", ");); print(););} \\ Michel Marcus, Apr 09 2015
-
[[binomial(n,k)*catalan_number(n) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 07 2020
A054993
Number of "long curves", i.e., topological types of smooth embeddings of the oriented real line into the oriented plane that coincide with the standard immersion x -> (x,0) in the neighborhood of -infinity and +infinity.
Original entry on oeis.org
1, 2, 8, 42, 260, 1796, 13396, 105706, 870772, 7420836, 65004584, 582521748, 5320936416, 49402687392, 465189744448, 4434492302426, 42731740126228, 415736458808868, 4079436831493480, 40338413922226212, 401652846850965808, 4024556509468827432, 40558226664529024000, 410887438338905738908, 4182776248940752113344, 42770152711524569532616, 439143340987014152920384, 4526179842103708969039296
Offset: 0
- V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994.
- S. M. Gusein-Zade, On the enumeration of curves from infinity to infinity, in: Singularities and Bifurcations, Adv. Sov. Math., v. 21 (1994), pp. 189-198.
- Steven R. Finch, Knots, links and tangles, August 8, 2003. [Cached copy, with permission of the author]
- S. M. Gusein-Zade and F. S. Duzhin, On the number of topological types of plane curves; (Russian) Uspekhi Mat. Nauk 53 (1998), no. 3(321), 197-198. English translation: Russian Mathematical Surveys 53 (1998) 626-627. Related program and data.
- J. L. Jacobsen and P. Zinn-Justin, A Transfer Matrix approach to the Enumeration of Knots
- J. L. Jacobsen and P. Zinn-Justin, A Transfer Matrix approach to the Enumeration of Colored Links, J. Knot Theory, 10 (2001), 1233-1267.
- Christoph Lamm, The enumeration of doubly symmetric diagrams for strongly positive amphicheiral knots, arXiv:2410.06601 [math.GT], 2024. See p. 14.
- P. Zinn-Justin and J.-B. Zuber, Knot theory and matrix integrals, arXiv:1006.1812 [math-ph], 2010.
- Index entries for sequences related to knots
A151374 enumerates the long curves having Gauss diagrams without intersections, cf.
A118814.
A156058
a(n) = 5^n * Catalan(n).
Original entry on oeis.org
1, 5, 50, 625, 8750, 131250, 2062500, 33515625, 558593750, 9496093750, 164023437500, 2870410156250, 50784179687500, 906860351562500, 16323486328125000, 295863189697265625, 5395152282714843750, 98911125183105468750, 1822047042846679687500
Offset: 0
-
[5^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
-
A156058_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 5*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od; convert(a,list)end: A156058_list(16); # Peter Luschny, May 19 2011
A156058 := proc(n)
5^n*A000108(n) ;
end proc: # R. J. Mathar, Oct 06 2012
-
Table[5^n CatalanNumber[n],{n,0,20}] (* Harvey P. Dale, Mar 13 2011 *)
A060656
a(n) = 2*a(n-1)*a(n-2)/a(n-3), with a(0)=a(1)=1.
Original entry on oeis.org
1, 1, 2, 4, 16, 64, 512, 4096, 65536, 1048576, 33554432, 1073741824, 68719476736, 4398046511104, 562949953421312, 72057594037927936, 18446744073709551616, 4722366482869645213696, 2417851639229258349412352
Offset: 0
a(6) = 2*64*16/4 = 512.
G.f. = 1 + x + 2*x^2 + 4*x^3 + 16*x^4 + 64*x^5 + 512*x^6 + 4096*x^7 + ...
-
A060656:=n->2^floor(n^2/4); seq(A060656(n), n=0..20); # Wesley Ivan Hurt, Apr 30 2014
-
a[ n_] := 2^Quotient[n^2, 4]; (* Michael Somos, Jan 24 2014 *)
nxt[{a_,b_,c_}]:={b,c,(2c*b)/a}; NestList[nxt,{1,1,2},20][[All,1]] (* Harvey P. Dale, Nov 26 2017 *)
-
{ for (n=0, 100, write("b060656.txt", n, " ", 2^(n^2\4)); ) } \\ Harry J. Smith, Jul 09 2009
-
{a(n) = 2^(n^2\4)}; /* Michael Somos, Jan 24 2014 */
A089022
Number of walks of length 2n on the 3-regular tree beginning and ending at some fixed vertex.
Original entry on oeis.org
1, 3, 15, 87, 543, 3543, 23823, 163719, 1143999, 8099511, 57959535, 418441191, 3043608351, 22280372247, 164008329423, 1213166815047, 9012417249663, 67208553680247, 502920171632943, 3775020828459687, 28415858155984863, 214444848602732247, 1622146752543427983
Offset: 0
a(2) = 15 because there are 3*3=9 walks whose second step is to return to the starting vertex and 3*2=6 walks whose second step is to move away from the starting vertex.
-
A000602 := x -> 2^x*binomial(2*x, x)-9^x+1/3*2^x*binomial(2*x, x) * hypergeom([1, 2*x+1], [x+1], 2/3); # Tobias Friedrich (tfried(AT)mpi-inf.mpg.de), Jun 12 2007
-
Table[2^n*Binomial[2*n,n]-3^(n-1)*Sum[(2/3)^k*Binomial[n+k,n],{k,0,n-1}],{n,0,20}] (* or *)
CoefficientList[Series[4/(1+3*Sqrt[1-8*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
-
my(x='x+O('x^30)); Vec(4/(1+3*sqrt(1-8*x))) \\ Joerg Arndt, May 10 2013
A151281
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, 0), (1, 0), (1, 1)}.
Original entry on oeis.org
1, 2, 6, 16, 48, 136, 408, 1184, 3552, 10432, 31296, 92544, 277632, 824448, 2473344, 7365120, 22095360, 65920000, 197760000, 590790656, 1772371968, 5299916800, 15899750400, 47578857472, 142736572416, 427357700096, 1282073100288, 3840133464064, 11520400392192, 34517383151616, 103552149454848
Offset: 0
- Robert Israel, Table of n, a(n) for n = 0..2000
- Paul Barry, A Note on a One-Parameter Family of Catalan-Like Numbers, JIS 12 (2009) 09.5.4
- A. Bostan, Computer Algebra for Lattice Path Combinatorics, Seminaire de Combinatoire Ph. Flajolet, March 28 2013.
- A. Bostan and M. Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2008-2009.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
- M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
- Elie De Panafieu, Mohamed Lamine Lamali, and Michael Wallner, Combinatorics of nondeterministic walks of the Dyck and Motzkin type, arXiv:1812.06650 [math.CO], 2018.
- Élie de Panafieu and Michael Wallner, Combinatorics of nondeterministic walks, arXiv:2311.03234 [math.CO], 2023.
Cf.
A368164 (nondeterministic Dyck bridges),
A368234 (nondeterministic Dyck excursions).
-
[n le 3 select Factorial(n) else (3*n*Self(n-1) + 8*(n-3)*Self(n-2) - 24*(n-3)*Self(n-3))/n: n in [1..41]]; // G. C. Greubel, Nov 09 2022
-
N:= 1000: # to get terms up to a(N)
S:= series((sqrt(1-8*x^2)+4*x-1)/(4*x*(1-3*x)),x,N+1):
seq(coeff(S,x,j),j=0..N); # Robert Israel, Feb 18 2013
-
aux[i_, j_, n_] := Which[Min[i, j, n]<0 || Max[i, j]>n, 0, n==0, KroneckerDelta[i, j, n], True, aux[i, j, n]= aux[-1+i, -1+j, -1+n] +aux[-1+i, j, -1+n] +aux[1+i, j, -1+n]]; Table[Sum[aux[i,j,n], {i,0,n}, {j,0,n}], {n,0,25}]
a[n_]:= a[n]= If[n<3, (n+1)!, (3*(n+1)*a[n-1] +8*(n-2)*a[n-2] -24*(n-2)*a[n-3])/(n+1)]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Nov 09 2022 *)
-
def a(n): # a = A151281
if (n==0): return 1
elif (n%2==1): return 3*a(n-1) - 2^((n-1)/2)*catalan_number((n-1)/2)
else: return 3*a(n-1)
[a(n) for n in (0..40)] # G. C. Greubel, Nov 09 2022
A369215
Expansion of (1/x) * Series_Reversion( x * ((1-x)^3-x) ).
Original entry on oeis.org
1, 4, 29, 261, 2627, 28315, 319648, 3731037, 44663058, 545312504, 6764556591, 85015779095, 1080185111768, 13852183882612, 179058158369828, 2330621446075640, 30519758687849439, 401806204894374041, 5315243189757111099, 70613088335938995385, 941714812929017751855
Offset: 0
-
CoefficientList[InverseSeries[Series[x((1-x)^3-x),{x,0,21}],x]/x,x] (* Stefano Spezia, Mar 31 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^3-x))/x)
-
a(n) = sum(k=0, n, binomial(n+k, k)*binomial(4*n+2*k+2, n-k))/(n+1);
A290605
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 2/(1 + sqrt(1 - 4*k*x)).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 8, 5, 0, 1, 4, 18, 40, 14, 0, 1, 5, 32, 135, 224, 42, 0, 1, 6, 50, 320, 1134, 1344, 132, 0, 1, 7, 72, 625, 3584, 10206, 8448, 429, 0, 1, 8, 98, 1080, 8750, 43008, 96228, 54912, 1430, 0, 1, 9, 128, 1715, 18144, 131250, 540672, 938223, 366080, 4862, 0
Offset: 0
G.f. of column k: A(x) = 1 + k*x + 2*k^2*x^2 + 5*k^3*x^3 + 14*k^4*x^4 + 42*k^5*x^5 + 132*k^6*x^6 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 2, 8, 18, 32, 50, ...
0, 5, 40, 135, 320, 625, ...
0, 14, 224, 1134, 3584, 8750, ...
0, 42, 1344, 10206, 43008, 131250, ...
Columns k=0-10 give:
A000007,
A000108,
A151374,
A005159,
A151403,
A156058,
A156128,
A156266,
A156270,
A156273,
A156275.
-
ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
A:= proc(n, k) option remember; k^n*ctln(n) end:
seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Oct 28 2019
-
Table[Function[k, SeriesCoefficient[2/(1 + Sqrt[1 - 4 k x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Showing 1-10 of 33 results.
Comments