A064306
Convolution of A052701 (Catalan numbers multiplied by powers of 2) with powers of -1.
Original entry on oeis.org
1, 1, 7, 33, 191, 1153, 7295, 47617, 318463, 2170881, 15028223, 105365505, 746651647, 5339185153, 38478839807, 279201841153, 2037998419967, 14954803494913, 110255315877887, 816299567480833, 6066679566041087
Offset: 0
-
CoefficientList[Series[(1-Sqrt[1-8*x])/(4*x*(1+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Dec 09 2013 *)
Table[FullSimplify[2^(n+1)*(2*n+2)! * Hypergeometric2F1Regularized[1, n+3/2, n+3, -8]/(n+1)! + (-1)^n/2],{n,0,20}] (* Vaclav Kotesovec, Dec 09 2013 *)
Table[(-1)^n*Sum[(-2)^k * CatalanNumber[k], {k,0,n}], {n,0,50}] (* G. C. Greubel, Jan 27 2017 *)
-
for(n=0, 25, print1((-1)^n*sum(k=0,n, (-2)^k*binomial(2*k,k)/(k+1)), ", ")) \\ G. C. Greubel, Jan 27 2017
-
def A064306():
f, c, n = 1, 1, 1
while True:
yield f
n += 1
c = c * (8*n - 12) // n
f = c - f
a = A064306()
print([next(a) for in range(21)]) # _Peter Luschny, Nov 30 2016
A151374
Number of walks within N^2 (the first quadrant of Z^2) starting at (0, 0), ending on the vertical axis and consisting of 2n steps taken from {(-1, -1), (-1, 0), (1, 1)}.
Original entry on oeis.org
1, 2, 8, 40, 224, 1344, 8448, 54912, 366080, 2489344, 17199104, 120393728, 852017152, 6085836800, 43818024960, 317680680960, 2317200261120, 16992801914880, 125210119372800, 926554883358720, 6882979133521920, 51309480813527040, 383705682605506560, 2877792619541299200
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Paul Barry, Generalized Eulerian Triangles and Some Special Production Matrices, arXiv:1803.10297 [math.CO], 2018.
- Paul Barry, Riordan arrays, the A-matrix, and Somos 4 sequences, arXiv:1912.01126 [math.CO], 2019.
- Mireille Bousquet-Mélou and Marni Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.
- J. Bouttier, P. Di Francesco and E. Guitter, Statistics of planar graphs viewed from a vertex: a study via labeled trees, Nucl. Phys. B, Vol. 675, No. 3 (2003), pp. 631-660. See p. 631, eq. (3.3).
- Marek Bożejko, Maciej Dołęga, Wiktor Ejsmont and Światosław R. Gal, Reflection length with two parameters in the asymptotic representation theory of type B/C and applications, arXiv:2104.14530 [math.RT], 2021.
- Vedran Čačić and Vjekoslav Kovač, On the fraction of IL formulas that have normal forms, arXiv:1309.3408 [math.LO], 2013.
- Stefano Capparelli and Alberto Del Fra, Dyck Paths, Motzkin Paths, and the Binomial Transform, Journal of Integer Sequences, Vol. 18 (2015), Article 15.8.5.
- Grégory Chatel and Vincent Pilaud, Cambrian Hopf algebras, Adv. Math. 311, 598-633 (2017). Prop. 3.
- Zhi Chen and Hao Pan, Identities involving weighted Catalan-Schröder and Motzkin Paths, arXiv:1608.02448 [math.CO], 2016. See eq. (1.13), a=b=2.
- Nicolas Crampe, Julien Gaboriaud and Luc Vinet, Racah algebras, the centralizer Z_n(sl_2) and its Hilbert-Poincaré series, arXiv:2105.01086 [math.RT], 2021.
- Hsien-Kuei Hwang, Mihyun Kang and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- Bradley Robert Jones, On tree hook length formulas, Feynman rules and B-series, Master's thesis, Simon Fraser University, 2014.
- Georg Muntingh, Implicit Divided Differences, Little Schröder Numbers and Catalan Numbers, J. Int. Seq., Vol. 15 (2012), Article 12.6.5; arXiv preprint, arXiv:1204.2709 [math.CO], 2012.
- L. Poulain d'Andecy, Centralisers and Hecke algebras in Representation Theory, with applications to Knots and Physics, arXiv:2304.00850 [math.RT], 2023. See p. 64.
-
[2^n * Catalan(n): n in [0..25]]; // Vincenzo Librandi, Oct 24 2012
-
A151374_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 2*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od;
convert(a,list)end: A151374_list(23); # Peter Luschny, May 19 2011
-
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[0, k, 2 n], {k, 0, 2 n}], {n, 0, 25}]
-
my(x='x+O('x^66)); Vec(sqrt(2-8*x-2*sqrt(1-8*x))/(4*x)) \\ Joerg Arndt, May 11 2013
-
def A151374():
a, n = 1, 1
while True:
yield a
n += 1
a = a * (8*n - 12) // n
A = A151374()
print([next(A) for in range(24)]) # _Peter Luschny, Nov 30 2016
A052714
a(n) = 2^(n-1) * n! * Catalan(n-1) for n > 0 with a(0) = 0.
Original entry on oeis.org
0, 1, 4, 48, 960, 26880, 967680, 42577920, 2214051840, 132843110400, 9033331507200, 686533194547200, 57668788341964800, 5305528527460761600, 530552852746076160000, 57299708096576225280000, 6646766139202842132480000, 824199001261152424427520000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 670.
- Jesús Leaños, Rutilo Moreno and Luis Manuel Rivera-Martínez, On the number of mth roots of permutations, arXiv:1005.1531 [math.CO], 2010-2011.
- Jesús Leaños, Rutilo Moreno and Luis Manuel Rivera-Martínez, On the number of mth roots of permutations, Australas. J. Combin., Vol. 52 (2012), pp. 41-54 (Theorem 1).
-
[0] cat [Catalan(n-1)*2^(n-1)*Factorial(n): n in [1..20]]; // Vincenzo Librandi, Mar 11 2013
-
spec := [S,{B=Union(Z,C),S=Union(B,C),C=Prod(S,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Join[{0}, Table[CatalanNumber[n-1] 2^(n-1) n!, {n, 1, 20}]] (* Vincenzo Librandi, Mar 11 2013 *)
-
a(n)=if(n<1,0,2^(n-1)*(2*n-2)!/(n-1)!)
-
[0]+[2^(n-1)*factorial(n)*catalan_number(n-1) for n in (1..30)] # G. C. Greubel, Apr 02 2021
A003645
a(n) = 2^n * C(n+1), where C(n) = A000108(n) Catalan numbers.
Original entry on oeis.org
1, 4, 20, 112, 672, 4224, 27456, 183040, 1244672, 8599552, 60196864, 426008576, 3042918400, 21909012480, 158840340480, 1158600130560, 8496400957440, 62605059686400, 463277441679360, 3441489566760960, 25654740406763520, 191852841302753280, 1438896309770649600
Offset: 0
- L. M. Koganov, V. A. Liskovets, T. R. S. Walsh, Total vertex enumeration in rooted planar maps, Ars Combin. 54 (2000), 149-160.
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
- A. Claesson, S. Kitaev and A. de Mier, An involution on bicubic maps and beta(0,1)-trees, arXiv preprint arXiv:1210.3219 [math.CO], 2012. - From _N. J. A. Sloane_, Jan 01 2013
- S. B. Ekhad and M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, 2017.
- Samuele Giraudo, Pluriassociative algebras II: The polydendriform operad and related operads, arXiv:1603.01394 [math.CO], 2016.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 652.
- Anatol N. Kirillov, Notes on Schubert, Grothendieck and key polynomials, SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 034, 56 p. (2016).
- Huyile Liang, Jeffrey Remmel, and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 13.
- V. A. Liskovets and T. R. S. Walsh, Enumeration of Eulerian and unicursal planar maps, Discr. Math., Vol. 282, No. 1-3 (2004), pp. 209-221.
- V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., Vol. 36, No.4 (2006), pp. 364-387.
- Amya Luo, Pattern Avoidance in Nonnesting Permutations, Undergraduate Thesis, Dartmouth College (2024). See p. 11.
- Youngja Park and SeungKyung Park, Enumeration of generalized lattice paths by string types, peaks, and ascents, Discrete Mathematics, Vol. 339, No. 11 (2016), pp. 2652-2659.
- M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seq., Vol. 9 (2006), Article 06.1.1.
-
[2^n*Binomial(2*n+3, n+1)/(2*n+3) : n in [0..30]]; // Wesley Ivan Hurt, Aug 23 2014
-
A003645:=n->2^n*binomial(2*n+3, n+1)/(2*n+3): seq(A003645(n), n=0..30); # Wesley Ivan Hurt, Aug 23 2014
-
Table[2^n CatalanNumber[n+1],{n,0,20}] (* Harvey P. Dale, May 07 2013 *)
-
a(n)=if(n<0,0,2^n*(2*n+2)!/(n+1)!/(n+2)!)
A025225
a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 2. Also a(n) = (2^n)*C(n-1), where C = A000108 (Catalan numbers).
Original entry on oeis.org
2, 4, 16, 80, 448, 2688, 16896, 109824, 732160, 4978688, 34398208, 240787456, 1704034304, 12171673600, 87636049920, 635361361920, 4634400522240, 33985603829760, 250420238745600, 1853109766717440, 13765958267043840, 102618961627054080, 767411365211013120
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..350
- Suzanne Bobzien, The combinatorics of the Stoic conjunction: Hipparchus refuted and Chrysippus vindicated, Oxford Studies in Ancient Philosophy, Vol. XL, Summer 2011, pp. 157-188.
- L. Guo and W. Y. Sit, Enumeration and generating functions of Rota-Baxter Words, Math. Comput. Sci. 4 (2010) 313-337, remark 3.3.
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 653.
- J.-C. Novelli and J.-Y. Thibon, Free quasi-symmetric functions and descent algebras for wreath products and noncommutative multi-symmetric functions, arXiv:0806.3682 [math.CO], 2008.
- Volkan Yildiz, Counting false entries in truth tables of bracketed formulas connected by m-implication, arXiv:1203.4645 [math.CO], 2012.
- Volkan Yildiz, General combinatorical structure of truth tables of bracketed formulas connected by implication, arXiv:1205.5595 [math.CO], 2012.
-
[2^n*Catalan(n-1): n in [1..30]]; // Vincenzo Librandi, Nov 06 2016
-
a:= n-> (2^n)*binomial(2*n-2, n-1)/n:
seq(a(n), n=1..25); # Alois P. Heinz, Jan 27 2012
-
InverseSeries[Series[y/2-y^2/2, {y, 0, 24}], x] (* then A(x)=y(x) *) (* Len Smiley, Apr 13 2000 *)
a[n_] := 2^n*CatalanNumber[n - 1]; Table[a[n], {n, 1, 23}] (* Jean-François Alcover, Jul 09 2013 *)
-
a(n)=polcoeff((1-sqrt(1-8*x+x*O(x^n)))/2,n)
A110506
Riordan array (1/(1-xc(2x)),xc(2x)/(1-xc(2x))), c(x) the g.f. of A000108.
Original entry on oeis.org
1, 1, 1, 3, 4, 1, 13, 19, 7, 1, 67, 102, 44, 10, 1, 381, 593, 278, 78, 13, 1, 2307, 3640, 1795, 568, 121, 16, 1, 14589, 23231, 11849, 4051, 999, 173, 19, 1, 95235, 152650, 79750, 28770, 7820, 1598, 234, 22, 1, 636925, 1025965, 545680, 204760, 59650, 13642, 2392, 304, 25, 1
Offset: 0
Rows begin:
1;
1,1;
3,4,1;
13,19,7,1;
67,102,44,10,1;
381,593,278,78,13,1;
From _Philippe Deléham_, Dec 01 2015: (Start)
Production matrix begins:
1, 1
2, 3, 1
2, 4, 3, 1
2, 4, 4, 3, 1
2, 4, 4, 4, 3, 1
2, 4, 4, 4, 4, 3, 1
2, 4, 4, 4, 4, 4, 3, 1
(End)
-
{{1}}~Join~Table[Sum[j Binomial[2 n - j - 1, n - j] Binomial[j, k] 2^(n - j), {j, 0, n}]/n, {n, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2015 *)
-
tabl(nn)= {for (n=0, nn, for (k=0, n, if (n==0, x = 0^k, x = sum(j=0, n, j*binomial(2*n-j-1, n-j)*binomial(j, k)*2^(n-j)/n)); print1(x, ", ");); print(););} \\ Michel Marcus, Jun 18 2015
A354733
a(0) = a(1) = 1; a(n) = 2 * Sum_{k=0..n-2} a(k) * a(n-k-2).
Original entry on oeis.org
1, 1, 2, 4, 10, 24, 64, 168, 464, 1280, 3624, 10304, 29728, 86240, 252480, 743040, 2200640, 6547200, 19571200, 58727680, 176883200, 534476800, 1619912320, 4923070464, 14999764480, 45807916544, 140196076544, 429931051008, 1320905583616, 4065358827520
Offset: 0
-
a[0] = a[1] = 1; a[n_] := a[n] = 2 Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 29}]
nmax = 29; CoefficientList[Series[(1 - Sqrt[1 - 8 x^2 (1 + x)])/(4 x^2), {x, 0, nmax}], x]
-
a(n) = sum(k=0, n\2, 2^k*binomial(k+1, n-2*k)*binomial(2*k, k)/(k+1)); \\ Seiichi Manyama, Nov 05 2023
A337168
a(n) = (-1)^n + 2 * Sum_{k=0..n-1} a(k) * a(n-k-1).
Original entry on oeis.org
1, 1, 5, 21, 105, 553, 3053, 17405, 101713, 606033, 3667797, 22485477, 139340985, 871429497, 5492959293, 34862161869, 222592918689, 1428814897825, 9215016141989, 59684122637237, 388045493943049, 2531696701375689, 16569559364596365, 108758426952823709
Offset: 0
-
a[n_] := a[n] = (-1)^n + 2 Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 23}]
Table[Sum[(-1)^(n - k) Binomial[n, k] 2^k CatalanNumber[k], {k, 0, n}], {n, 0, 23}]
Table[(-1)^n Hypergeometric2F1[1/2, -n, 2, 8], {n, 0, 23}]
A098579
Expansion of sqrt(1-8*x).
Original entry on oeis.org
1, -4, -8, -32, -160, -896, -5376, -33792, -219648, -1464320, -9957376, -68796416, -481574912, -3408068608, -24343347200, -175272099840, -1270722723840, -9268801044480, -67971207659520, -500840477491200, -3706219533434880, -27531916534087680, -205237923254108160
Offset: 0
G.f. = 1 - 4*x - 8*x^2 - 32*x^3 - 160*x^4 - 896*x^5 - 5376*x^6 + ... - _Michael Somos_, Aug 22 2019
-
Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!(Sqrt(1-8*x))); // G. C. Greubel, Feb 03 2018
-
CoefficientList[Series[Sqrt[1-8x],{x,0,30}],x] (* or *) Table[(8^(x-1) Pochhammer[-(1/2),x-1])/Pochhammer[1,x-1],{x,30}] (* Harvey P. Dale, Jan 24 2015 *)
a[ n_] := If[ n < 1, Boole[n == 0], -CatalanNumber[n - 1] 2^(n + 1)]; (* Michael Somos, Aug 22 2019 *)
-
my(x='x+O('x^30)); Vec(sqrt(1-8*x)) \\ G. C. Greubel, Feb 03 2018
A103939
Number of unrooted Eulerian n-edge maps in the plane (planar with a distinguished outside face).
Original entry on oeis.org
1, 1, 3, 8, 32, 136, 722, 3924, 22954, 138316, 860364, 5472444, 35503288, 234070648, 1564945158, 10589356592, 72412611194, 499788291616, 3478059566250, 24383023246284, 172074483068320, 1221654305104920, 8720583728414354, 62560709120463028, 450854177292364660
Offset: 0
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
-
a[n_] := (1/(2n)) (2^n Binomial[2n, n]/(n+1) + Sum[Boole[0Jean-François Alcover, Aug 28 2019 *)
-
a(n)={if(n==0, 1, sumdiv(n, d, if(dAndrew Howroyd, Mar 29 2021
a(0)=1 prepended and terms a(21) and beyond from
Andrew Howroyd, Mar 29 2021
Showing 1-10 of 20 results.
Comments