Wenjin Woan has authored 8 sequences.
A131178
Non-plane increasing unary binary (0-1-2) trees where the nodes of outdegree 1 come in 2 colors.
Original entry on oeis.org
1, 2, 5, 16, 64, 308, 1730, 11104, 80176, 643232, 5676560, 54650176, 569980384, 6401959328, 77042282000, 988949446144, 13488013248256, 194780492544512, 2969094574403840, 47640794742439936, 802644553810683904, 14166772337295285248, 261410917571703825920
Offset: 1
G.f. = x + 2*x^2 + 5*x^3 + 16*x^4 + 64*x^5 + 308*x^6 + 1730*x^7 + 11104*x^8 + ...
a(3) = 5: Denoting the two types of node of outdegree 1 by the letters a or b, the 5 possible trees are
.
. 1a 1b 1a 1b 1
. | | | | / \
. 2a 2b 2b 2a 2 3
. | | | |
. 3 3 3 3
- _Peter Bala_, Sep 01 2011
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- Jean-Luc Baril, Sergey Kirgizov, Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- Lapo Cioni, Luca Ferrari, and Corentin Henriet. A direct bijection between two-stack sortable permutations and fighting fish, Euro. Conf. Comb., Graph Theory Appl. (2023) No. 12, 283-289.
- D. Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions. arXiv:math/0501052v2 [math.CA], 2005.
-
E:= (2*(exp(sqrt(2)*x)-1)) / ((2+sqrt(2))-(2-sqrt(2))*exp(sqrt(2)*x)):
S:= map(simplify,series(E,x,101)):
seq(coeff(S,x,j)*j!, j=1..100); # Robert Israel, Nov 23 2016
-
max = 25; f[x_] := (2*(Exp[Sqrt[2]*x] - 1))/((2 + Sqrt[2]) - (2 - Sqrt[2])*Exp[Sqrt[2]*x]); Drop[ Simplify[ CoefficientList[ Series[f[x], {x, 0, max}], x]*Range[0, max]!], 1] (* Jean-François Alcover, Oct 05 2011 *)
-
x='x+O('x^66); /* that many terms */
default(realprecision,1000); /* working with floats here */
egf=(2*(exp(sqrt(2)*x)-1)) / ((2+sqrt(2))-(2-sqrt(2))*exp(sqrt(2)*x));
round(Vec(serlaplace(egf))) /* show terms */
/* Joerg Arndt, Sep 01 2011 */
-
/* the following program should be preferred. */
Vec( serlaplace( serreverse( intformal( 1/(1+2*x+1/2*x^2) + O(x^66) ) ) ) )
\\ Joerg Arndt, Mar 01 2014
-
{a(n) = if( n<1, 0, n! * polcoeff( 2 / (-2 + quadgen(8) * (-1 + 2 / (1 - exp(-quadgen(8) * x + x * O(x^n))))), n))};
Changed offset to 1 to agree with name and example. -
Michael Somos, Nov 23 2016
A131638
Increasing binary trees having exactly two vertices with outdegree 1.
Original entry on oeis.org
1, 11, 180, 4288, 141584, 6213288, 350400832, 24718075136, 2133652515072, 221311262045440, 27166907582280704, 3895974311462313984, 645512064907811491840, 122381396964887716078592, 26325690425815766552887296, 6377608610246241663568248832
Offset: 1
-
Table[n!*SeriesCoefficient[1/2*(-((x*Sec[x/Sqrt[2]]^2 *Tan[x/Sqrt[2]]) /Sqrt[2]) + 3*Sec[x/Sqrt[2]]^2 *Tan[x/Sqrt[2]]^2), {x, 0, n}], {n, 2, 40, 2}] (* Vaclav Kotesovec after Michel Marcus, Sep 25 2013 *)
-
lista(m) = { default(realprecision, 30); x = y + O(y^m); egf = (3*tan(x/sqrt(2))^2/cos(x/sqrt(2))^2-x*tan(x/sqrt(2))/(sqrt(2)*cos(x/sqrt(2))^2))/2; forstep (n=2, m, 2, print1(round(n!*polcoeff(egf, n, y)), ", "));} \\ Michel Marcus, Mar 03 2013
A125307
Number of increasing trees with branches of height 1.
Original entry on oeis.org
1, 1, 4, 15, 80, 480, 3444, 27790, 253504, 2556792, 28382880, 343071168, 4490999424, 63253633872, 954133373088, 15343385194800, 262060291958784, 4737396899952384, 90370907329842432, 1814141041750834560, 38229440785429201920, 843786230514306621696
Offset: 1
- R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1997. Proposition 1.3.16, p. 25.
-
Range[0, 21]!CoefficientList[ Series[(x - 1 + Log[1 - x])/((1 - x)^2(Log[1 - x] - 1)), {x, 0, 21}], x] (* Robert G. Wilson v, Jan 26 2007 *)
-
a(n):=n!*(sum((-1)^(m)*(n-m+1)/(m-1)!*sum(k!*stirling1(m-1,k), k,1,m-1), m,2,n)+1); /* Vladimir Kruchinin, Sep 09 2010 */
-
x='x+O('x^30); Vec(serlaplace( (x-1+log(1-x))/((x-1)^2*(log(1-x) -1)))) \\ G. C. Greubel, Sep 05 2018
A125062
Number of increasing trees with hills of height 1.
Original entry on oeis.org
1, 1, 4, 15, 68, 370, 2364, 17388, 144864, 1349136, 13894560, 156831840, 1925527680, 25550778240, 364416917760, 5559659078400, 90349397913600, 1558170228787200, 28423674336153600, 546807873520742400, 11064204944529408000, 234902850943703040000, 5221386564941352960000
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1997, p25.
-
a := n -> ifelse(n = 0, 1, (n - 1)! * (n*(harmonic(n) + 1) - 1)):
seq(a(n), n = 0..22); # Peter Luschny, Apr 09 2024
-
With[{nn=20},CoefficientList[Series[(1+x Log[1/(1-x)])/(1-x),{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Mar 14 2012 *)
a[0]=1;a[n_]:=(n-1)*(n-1)!+Abs[StirlingS1[n+1,2]];Flatten[Table[a[n],{n,0,19}]] (* Detlef Meya, Apr 09 2024 *)
-
x='x+O('x^30); Vec(serlaplace((1+x*log(1/(1-x)))/(1-x))) \\ G. C. Greubel, Aug 31 2018
Edited by the Associate Editors of the OEIS, Oct 05 2009
A079280
Number of log-concave paths of length n starting from the origin (0,0) with steps from {N=(0,1), E=(1,0) and S=(0,-1)} that stay in the second octant and never touch the line y=x except possibly at the beginning or the end.
Original entry on oeis.org
1, 2, 2, 5, 7, 17, 26, 62, 99, 233, 382, 890, 1486, 3434, 5812, 13340, 22819, 52073, 89846, 204002, 354522, 801422, 1401292, 3155300, 5546382, 12444842, 21977516, 49155332, 87167164, 194392628, 345994216, 769547192, 1374282019, 3049104233
Offset: 1
A059435
Number of lattice paths in plane starting at (0,0) and ending at (n,n) with steps from {(i,j): i+j > 0, i, j >= 0} that never go below the line y = x.
Original entry on oeis.org
1, 2, 12, 88, 720, 6304, 57792, 547712, 5323008, 52761088, 531311616, 5420488704, 55905767424, 581954543616, 6106210615296, 64513688174592, 685741070942208, 7328106153115648, 78684992821788672, 848487859401261056
Offset: 0
- W.-J. Woan, A bijective proof by induction that the n-th term of this sequence is 2^(n-1) times of the n-th term of the big Schroeder number, 2001 (unpublished).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- David Callan, A uniformly distributed statistic on a class of lattice paths, Electronic J. Combinatorics, Vol. 11(1), R82, 2004.
- Z. Chen and H. Pan, Identities involving weighted Catalan-Schroder and Motzkin Paths, arXiv:1608.02448 (2016); see Eq. (1.13) with a=2 and b=4.
- Ira M. Gessel, A factorization for formal Laurent series and lattice path enumeration, J. Combin. Theory Ser. A 28 (1980), 321-337.
- Elina Robeva and Melinda Sun, Bimonotone Subdivisions of Point Configurations in the Plane, arXiv:2007.00877 [math.CO], 2020. See B(2,n) column in Table 3 (p. 10).
- Robert A. Sulanke, Counting lattice paths by Narayana polynomials, Electronic J. Combinatorics 7 (2000), R40.
-
gf := (1+2*x-sqrt(4*x^2-12*x+1))/(8*x): s := series(gf, x, 100): for i from 0 to 50 do printf(`%d,`,coeff(s,x,i)) od:
-
Table[SeriesCoefficient[(1+2*x-Sqrt[4*x^2-12*x+1])/(8*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 11 2012 *)
-
x='x+O('x^66); Vec((1+2*x-sqrt(4*x^2-12*x+1))/(8*x)) \\ Joerg Arndt, May 06 2013
A059231
Number of different lattice paths running from (0,0) to (n,0) using steps from S = {(k,k) or (k,-k): k positive integer} that never go below the x-axis.
Original entry on oeis.org
1, 1, 5, 29, 185, 1257, 8925, 65445, 491825, 3768209, 29324405, 231153133, 1841801065, 14810069497, 120029657805, 979470140661, 8040831465825, 66361595715105, 550284185213925, 4582462506008253, 38306388126997785, 321327658068506121, 2703925940081270205
Offset: 0
a(3) = 29 since the top row of Q^2 = (5, 8, 16, 0, 0, 0, ...), and 5 + 8 + 16 = 29.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Paul Barry and Aoife Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15 (2012), Article 12.4.8.
- Zhi Chen and Hao Pan, Identities involving weighted Catalan, Schroder and Motzkin paths, arXiv:1608.02448 [math.CO], 2016. See eq. (1.13), a=1, b=4.
- Curtis Coker, Enumerating a class of lattice paths, Discrete Math., 271 (2003), 13-28 (the sequence d_n).
- Curtis Coker, A family of eigensequences, Discrete Math. 282 (2004), 249-250.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Joseph P. S. Kung and Anna de Mier, Catalan lattice paths with rook, bishop and spider steps, J. Comb. Theor., Series A (2013) Vol. 120, Issue 2, 379-389.
- Gregory J. Morrow, Laws relating runs and steps in gambler’s ruin, Stochastic Proc. Appl. (2024) Vol. 125, Issue 5, 2010-2025.
- Gregory Morrow, Some probability distributions and integer sequences related to rook paths, Univ. Colorado Springs (2024). See pp. 1, 4, 15, 22. DOI
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 98.
- Wen-jin Woan, Diagonal lattice paths, Congr. Numer. 151 (2001) 173-178.
-
gf := (1+3*x-sqrt(9*x^2-10*x+1))/(8*x): s := series(gf, x, 100): for i from 0 to 50 do printf(`%d,`,coeff(s, x, i)) od:
A059231_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := a[w-1]+4*add(a[j]*a[w-j-1],j=1..w-1) od;
convert(a, list) end: A059231_list(20); # Peter Luschny, May 19 2011
-
Join[{1},Table[-I 3^n/2LegendreP[n,-1,5/3],{n,40}]] (* Harvey P. Dale, Jun 09 2011 *)
Table[Hypergeometric2F1[-n, 1 - n, 2, 4], {n, 0, 22}] (* Arkadiusz Wesolowski, Aug 13 2012 *)
-
{a(n) = if( n<0, 0, polcoeff( (1 + 3*x - sqrt(1 - 10*x + 9*x^2 + x^2 * O(x^n))) / (8*x), n))}; /* Michael Somos, Sep 28 2003 */
-
{a(n) = if( n<0, 0, n++; polcoeff( serreverse( x * (1 - 4*x) / (1 - 3*x) + x * O(x^n)), n))}; /* Michael Somos, Sep 28 2003 */
-
# Algorithm of L. Seidel (1877)
def A059231_list(n) :
D = [0]*(n+2); D[1] = 1
R = []; b = False; h = 1
for i in range(2*n) :
if b :
for k in range(1, h, 1) : D[k] += 2*D[k+1]
else :
for k in range(h, 0, -1) : D[k] += 2*D[k-1]
h += 1
b = not b
if b : R.append(D[1])
return R
A059231_list(23) # Peter Luschny, Oct 19 2012
A051485
Number of double nodes (exactly two nodes on that level) for all Motzkin paths of length n.
Original entry on oeis.org
0, 1, 1, 2, 6, 14, 32, 74, 180, 457, 1195, 3177, 8526, 23018, 62441, 170153, 465791, 1280956, 3538618, 9817619, 27348480, 76467497, 214532805, 603732396, 1703728554, 4819990947, 13667248631, 38834528740, 110556072877, 315290709729, 900635841754, 2576615923655, 7381956798465, 21177682172332, 60832837964492
Offset: 0
Of the 9 Motzkin paths of length 4 the following 5 have a total of 6 double nodes:
|1......|
|2../\..|3..__..|2.._...|2..._..|2......|
|2./..\.|2./..\.|3./.\_.|3._/.\.|3./\/\.|
Comments