A278677
a(n) = Sum_{k=0..n} A011971(n, k)*(k + 1). The Aitken-Bell triangle considered as a linear transform applied to the positive numbers.
Original entry on oeis.org
1, 5, 23, 109, 544, 2876, 16113, 95495, 597155, 3929243, 27132324, 196122796, 1480531285, 11647194573, 95297546695, 809490850313, 7126717111964, 64930685865768, 611337506786061, 5940420217001199, 59502456129204083, 613689271227219015, 6510381400140132872
Offset: 0
Treeshelves of size 3:
1 1 1 1 1 1
/ \ / \ / \ / \
2 2 / \ 2 \ / 2
/ \ 2 2 3 3
3 3 \ /
3 3
Pattern T231:
1
/
/
2
\
3
Treeshelves of size 3 that avoid pattern T231:
1 1 1 1 1
/ \ \ / \ / \
2 2 \ 2 \ / 2
/ \ 2 3 3
3 3 /
3
Popularity of left children here is 5.
- Alois P. Heinz, Table of n, a(n) for n = 0..572
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.
- J. Françon, Arbres binaires de recherche : propriétés combinatoires et applications, Revue française d'automatique informatique recherche opérationnelle, Informatique théorique, 10 no. 3 (1976), pp. 35-50.
Cf.
A000110,
A000111,
A000142,
A001286,
A008292,
A011971,
A131178,
A278678,
A278679,
A285595,
A286897,
A367955.
-
b:= proc(n, m) option remember; `if`(n=0, [1, 0],
(p-> p+[0, p[1]*n])(b(n-1, m+1))+m*b(n-1, m))
end:
a:= n-> b(n+1, 0)[2]:
seq(a(n), n=0..22); # Alois P. Heinz, Dec 15 2023
# Using the generating function:
gf := ((exp(z + exp(z)-1)*(z-1)) + exp(exp(z)-1))/z^2: ser := series(gf, z, 25):
seq((n+2)!*coeff(ser, z, n), n=0..22); # Peter Luschny, Feb 01 2025
-
a[n_] := (n+3) BellB[n+2] - BellB[n+3];
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Dec 01 2018 *)
-
from sympy import bell
HOW_MANY = 30
print([(n + 3) * bell(n+2) - bell(n + 3) for n in range(HOW_MANY)])
A278678
Popularity of left children in treeshelves avoiding pattern T321.
Original entry on oeis.org
1, 4, 19, 94, 519, 3144, 20903, 151418, 1188947, 10064924, 91426347, 887296422, 9164847535, 100398851344, 1162831155151, 14198949045106, 182317628906283, 2455925711626404, 34632584722468115, 510251350142181470, 7840215226100517191, 125427339735162102104
Offset: 2
Treeshelves of size 3:
1 1 1 1 1 1
/ \ / \ / \ / \
2 2 / \ 2 \ / 2
/ \ 2 2 3 3
3 3 \ /
3 3
Pattern T321:
1
/
2
/
3
Treeshelves of size 3 that avoid pattern T321:
1 1 1 1 1
\ / \ / \ / \
2 / \ 2 \ / 2
\ 2 2 3 3
3 \ /
3 3
Popularity of left children is 4.
- Alois P. Heinz, Table of n, a(n) for n = 2..483
- Jean-Luc Baril, Sergey Kirgizov, Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.
- J. Françon, Arbres binaires de recherche : propriétés combinatoires et applications, Revue française d'automatique informatique recherche opérationnelle, Informatique théorique, 10 no. 3 (1976), pp. 35-50
-
b:= proc(u, o) option remember; `if`(u+o=0, 1,
add(b(o-1+j, u-j), j=1..u))
end:
a:= n-> (n+1)*b(n+1, 0)-b(n+2, 0):
seq(a(n), n=2..25); # Alois P. Heinz, Oct 27 2017
-
b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[o-1+j, u-j], {j, 1, u}]];
a[n_] := (n+1)*b[n+1, 0] - b[n+2, 0];
Table[a[n], {n, 2, 25}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
-
# by Taylor expansion
from sympy import *
from sympy.abc import z
h = (-sin(z) + 1 + (z-1)*cos(z))/ (1-sin(z))**2
NUMBER_OF_COEFFS = 20
coeffs = Poly(series(h,n = NUMBER_OF_COEFFS)).coeffs()
coeffs.reverse()
# and remove first coefficient 1 that corresponds to O(n**k)
coeffs.pop(0)
print([coeffs[n]*factorial(n+2) for n in range(len(coeffs))])
A278679
Popularity of left children in treeshelves avoiding pattern T213.
Original entry on oeis.org
1, 5, 24, 128, 770, 5190, 38864, 320704, 2894544, 28382800, 300575968, 3419882304, 41612735632, 539295974000, 7417120846080, 107904105986048, 1655634186628352, 26721851169634560, 452587550053179392, 8026445538106839040, 148751109541600495104
Offset: 2
Treeshelves of size 3:
1 1 1 1 1 1
/ \ / \ / \ / \
2 2 / \ 2 \ / 2
/ \ 2 2 3 3
3 3 \ /
3 3
Pattern T213:
1
/ \
2 \
3
Treeshelves of size 3 that avoid pattern T213:
1 1 1 1 1
/ \ / \ / \
2 2 / \ / 2
/ \ 2 2 3
3 3 \ /
3 3
Popularity of left children is 5.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.
- J. Françon, Arbres binaires de recherche : propriétés combinatoires et applications, Revue française d'automatique informatique recherche opérationnelle, Informatique théorique, 10 no. 3 (1976), p. 35-50.
-
terms = 21;
egf = (E^(Sqrt[2] z)(4z - 4) - (Sqrt[2] - 2) E^(2 Sqrt[2] z) + Sqrt[2] + 2)/((Sqrt[2] - 2) E^(Sqrt[2] z) + 2 + Sqrt[2])^2;
CoefficientList[egf + O[z]^(terms + 2), z]*Range[0, terms + 1]! // Round // Drop[#, 2]& (* Jean-François Alcover, Jan 26 2019 *)
-
## by Taylor expansion
from sympy import *
from sympy.abc import z
h = (exp(sqrt(2)*z) * (4*z-4) - (sqrt(2)-2)*exp(2*sqrt(2)*z) + sqrt(2) + 2) / ((sqrt(2)-2)*exp(sqrt(2)*z) + 2 + sqrt(2))**2
NUMBER_OF_COEFFS = 20
coeffs = Poly(series(h,n = NUMBER_OF_COEFFS)).coeffs()
coeffs.reverse()
## and remove first coefficient 1 that corresponds to O(n**k)
coeffs.pop(0)
print([coeffs[n]*factorial(n+2) for n in range(len(coeffs))])
Showing 1-3 of 3 results.
Comments