cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A088457 Number of single nodes (exactly one node on that level) for all Motzkin paths of length n.

Original entry on oeis.org

1, 0, 1, 2, 4, 8, 18, 44, 113, 296, 782, 2076, 5538, 14856, 40100, 108936, 297793, 818832, 2263481, 6286498, 17532707, 49077268, 137821247, 388150322, 1095980561, 3101840232, 8797579789, 25001305410, 71179961918, 203000438544, 579876376729, 1658948939262
Offset: 0

Views

Author

Michael Somos, Oct 01 2003

Keywords

Comments

A Motzkin path of length n is a sequence [y(0),...,y(n)] such that |y(i)-y(i+1)| <= 1, 0=y(0)=y(n)<=y(i).

Examples

			[0,0,0,1,0], [0,0,1,0,0], [0,1,0,0,0], [0,1,2,1,0] are the a(4) = 4 sequences.
		

Crossrefs

Column k=1 of A364386 and of A372014.

Programs

  • Maple
    b:= proc(x, y, h, c) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, c, add(b(x-1, y-i, max(h, y),
         `if`(h=y, 0, `if`(h b(n, 0$2, 1):
    seq(a(n), n=0..31);  # Alois P. Heinz, Jul 25 2023
  • Mathematica
    b[x_, y_, h_, c_] := b[x, y, h, c] = If[y<0 || y>x, 0, If[x == 0, c, Sum[b[x-1, y-i, Max[h, y], If[h == y, 0, If[h < y, 1, c]]], {i, -1, 1}]]];
    a[n_] := b[n, 0, 0, 1];
    Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Oct 23 2023, after Alois P. Heinz *)
  • PARI
    {a(n)=local(p0, p1, p2); if(n<0, 0, p1=1; polcoeff(sum(i=0, n, if(p2=(1-x)*p1-x^2*p0, p0=p1; p1=p2; (x^i/p0)^2), x*O(x^n)), n))}

Extensions

a(30)-a(31) from Alois P. Heinz, Jul 21 2023

A372014 T(n,k) is the total number of levels in all Motzkin paths of length n containing exactly k path nodes; triangle T(n,k), n>=0, 1<=k<=n+1, read by rows.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 4, 6, 4, 3, 1, 8, 14, 12, 7, 4, 1, 18, 32, 33, 21, 11, 5, 1, 44, 74, 84, 64, 34, 16, 6, 1, 113, 180, 208, 181, 111, 52, 22, 7, 1, 296, 457, 520, 485, 344, 179, 76, 29, 8, 1, 782, 1195, 1334, 1273, 1000, 599, 274, 107, 37, 9, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 15 2024

Keywords

Comments

A Motzkin path of length n has n+1 nodes.

Examples

			In the A001006(3) = 4 Motzkin paths of length 3 there are 2 levels with 1 node, 2 levels with 2 nodes, 2 levels with 3 nodes, and 1 level with 4 nodes.
  2  _     1        1
  2 / \    3 /\_    3 _/\    4 ___    .
  So row 3 is [2, 2, 2, 1].
Triangle T(n,k) begins:
    1;
    0,    1;
    1,    1,    1;
    2,    2,    2,    1;
    4,    6,    4,    3,    1;
    8,   14,   12,    7,    4,   1;
   18,   32,   33,   21,   11,   5,   1;
   44,   74,   84,   64,   34,  16,   6,   1;
  113,  180,  208,  181,  111,  52,  22,   7,  1;
  296,  457,  520,  485,  344, 179,  76,  29,  8, 1;
  782, 1195, 1334, 1273, 1000, 599, 274, 107, 37, 9, 1;
  ...
		

Crossrefs

Columns k=1-2 give: A088457, A051485.
Row sums give A372033 = A001006 + A333498.

Programs

  • Maple
    g:= proc(x, y, p) (h-> `if`(x=0, add(z^coeff(h, z, i)
              , i=0..degree(h)), b(x, y, h)))(p+z^y) end:
    b:= proc(x, y, p) option remember; `if`(y+2<=x, g(x-1, y+1, p), 0)
          +`if`(y+1<=x, g(x-1, y, p), 0)+`if`(y>0, g(x-1, y-1, p), 0)
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=1..n+1))(g(n, 0$2)):
    seq(T(n), n=0..10);

Formula

Sum_{k=1..n+1} k * T(n,k) = A005717(n+1) = (n+1) * A001006(n).

A371903 Total number of levels in all Dyck paths of semilength n containing exactly 2 path nodes.

Original entry on oeis.org

0, 1, 3, 5, 15, 44, 134, 427, 1408, 4753, 16321, 56812, 200046, 711425, 2551886, 9222147, 33544682, 122712465, 451169747, 1666248405, 6178586630, 22994275870, 85859249486, 321562877934, 1207665205311, 4547078084804
Offset: 0

Views

Author

Alois P. Heinz, Apr 13 2024

Keywords

Examples

			a(3) = 3 + 2 + 0 + 0 + 0 = 5:
   1
  _2   /\      _2           1           1
  _2  /  \      3  /\/\     3  /\       3    /\     3
  _2 /    \    _2 /    \    3 /  \/\    3 /\/  \    4 /\/\/\    .
		

Crossrefs

Column k=2 of A371928.

Programs

  • Maple
    g:= proc(x, y, p) (h-> `if`(x=0, add(`if`(coeff(h, z, i)=2, 1, 0),
          i=0..degree(h)), b(x, y, h)))(p+`if`(coeff(p, z, y)<3, z^y, 0))
        end:
    b:= proc(x, y, p) option remember; `if`(y+2<=x,
          g(x-1, y+1, p), 0)+`if`(y>0, g(x-1, y-1, p), 0)
        end:
    a:= n-> g(2*n, 0$2):
    seq(a(n), n=0..18);
Showing 1-3 of 3 results.