cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A088457 Number of single nodes (exactly one node on that level) for all Motzkin paths of length n.

Original entry on oeis.org

1, 0, 1, 2, 4, 8, 18, 44, 113, 296, 782, 2076, 5538, 14856, 40100, 108936, 297793, 818832, 2263481, 6286498, 17532707, 49077268, 137821247, 388150322, 1095980561, 3101840232, 8797579789, 25001305410, 71179961918, 203000438544, 579876376729, 1658948939262
Offset: 0

Views

Author

Michael Somos, Oct 01 2003

Keywords

Comments

A Motzkin path of length n is a sequence [y(0),...,y(n)] such that |y(i)-y(i+1)| <= 1, 0=y(0)=y(n)<=y(i).

Examples

			[0,0,0,1,0], [0,0,1,0,0], [0,1,0,0,0], [0,1,2,1,0] are the a(4) = 4 sequences.
		

Crossrefs

Column k=1 of A364386 and of A372014.

Programs

  • Maple
    b:= proc(x, y, h, c) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, c, add(b(x-1, y-i, max(h, y),
         `if`(h=y, 0, `if`(h b(n, 0$2, 1):
    seq(a(n), n=0..31);  # Alois P. Heinz, Jul 25 2023
  • Mathematica
    b[x_, y_, h_, c_] := b[x, y, h, c] = If[y<0 || y>x, 0, If[x == 0, c, Sum[b[x-1, y-i, Max[h, y], If[h == y, 0, If[h < y, 1, c]]], {i, -1, 1}]]];
    a[n_] := b[n, 0, 0, 1];
    Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Oct 23 2023, after Alois P. Heinz *)
  • PARI
    {a(n)=local(p0, p1, p2); if(n<0, 0, p1=1; polcoeff(sum(i=0, n, if(p2=(1-x)*p1-x^2*p0, p0=p1; p1=p2; (x^i/p0)^2), x*O(x^n)), n))}

Extensions

a(30)-a(31) from Alois P. Heinz, Jul 21 2023

A371928 T(n,k) is the total number of levels in all Dyck paths of semilength n containing exactly k path nodes; triangle T(n,k), n>=0, 1<=k<=n+1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 3, 5, 6, 1, 8, 15, 13, 11, 1, 23, 44, 43, 29, 20, 1, 71, 134, 138, 106, 62, 37, 1, 229, 427, 446, 371, 248, 132, 70, 1, 759, 1408, 1478, 1275, 941, 571, 283, 135, 1, 2566, 4753, 5017, 4410, 3437, 2331, 1310, 611, 264, 1, 8817, 16321, 17339, 15458, 12426, 9027, 5709, 3002, 1324, 521, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 14 2024

Keywords

Comments

A Dyck path of semilength n has 2n+1 = A005408(n) nodes.

Examples

			In the A000108(3) = 5 Dyck paths of semilength 3 there are 3 levels with 1 node, 5 levels with 2 nodes, 6 levels with 3 nodes, and 1 level with 4 nodes.
  1
  2   /\      2           1           1
  2  /  \     3  /\/\     3  /\       3    /\     3
  2 /    \    2 /    \    3 /  \/\    3 /\/  \    4 /\/\/\    .
  So row 3 is [3, 5, 6, 1].
Triangle T(n,k) begins:
     1;
     1,     1;
     1,     3,     1;
     3,     5,     6,     1;
     8,    15,    13,    11,     1;
    23,    44,    43,    29,    20,    1;
    71,   134,   138,   106,    62,   37,    1;
   229,   427,   446,   371,   248,  132,   70,    1;
   759,  1408,  1478,  1275,   941,  571,  283,  135,    1;
  2566,  4753,  5017,  4410,  3437, 2331, 1310,  611,  264,   1;
  8817, 16321, 17339, 15458, 12426, 9027, 5709, 3002, 1324, 521, 1;
  ...
		

Crossrefs

Columns k=1-2 give: A152880, A371903.
Row sums give A261003.
T(n+1,n+1) gives A006127.

Programs

  • Maple
    g:= proc(x, y, p) (h-> `if`(x=0, add(z^coeff(h, z, i)
              , i=0..degree(h)), b(x, y, h)))(p+z^y) end:
    b:= proc(x, y, p) option remember; `if`(y+2<=x,
          g(x-1, y+1, p), 0)+`if`(y>0, g(x-1, y-1, p), 0)
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=1..n+1))(g(2*n, 0$2)):
    seq(T(n), n=0..10);

Formula

Sum_{k=1..n+1} k * T(n,k) = A001700(n) = A005408(n) * A000108(n).

A051485 Number of double nodes (exactly two nodes on that level) for all Motzkin paths of length n.

Original entry on oeis.org

0, 1, 1, 2, 6, 14, 32, 74, 180, 457, 1195, 3177, 8526, 23018, 62441, 170153, 465791, 1280956, 3538618, 9817619, 27348480, 76467497, 214532805, 603732396, 1703728554, 4819990947, 13667248631, 38834528740, 110556072877, 315290709729, 900635841754, 2576615923655, 7381956798465, 21177682172332, 60832837964492
Offset: 0

Views

Author

Keywords

Examples

			Of the 9 Motzkin paths of length 4 the following 5 have a total of 6 double nodes:
|1......|
|2../\..|3..__..|2.._...|2..._..|2......|
|2./..\.|2./..\.|3./.\_.|3._/.\.|3./\/\.|
		

Crossrefs

Column k=2 of A372014.

Extensions

Edited by Michael Somos, Sep 29 2003
a(16)-a(34) from Alois P. Heinz, Apr 13 2024

A372033 The total number of levels visited by all Motzkin paths of length n.

Original entry on oeis.org

1, 1, 3, 7, 18, 46, 121, 323, 875, 2395, 6611, 18371, 51337, 144145, 406420, 1150126, 3265412, 9298372, 26547710, 75978322, 217921336, 626287520, 1803176384, 5200298000, 15020569818, 43447201226, 125837214564, 364911724264, 1059404265599, 3078918594707
Offset: 0

Views

Author

Alois P. Heinz, Apr 16 2024

Keywords

Crossrefs

Row sums of A372014.

Programs

  • Maple
    b:= proc(x, y, h) option remember; `if`(x=0, h+1, add(
          b(x-1, y+j, max(h, y)), j=-min(1, y)..min(1, x-y-1)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..35);

Formula

a(n) = A001006(n) + A333498(n).
Showing 1-4 of 4 results.