cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: José Luis Ramírez Ramírez

José Luis Ramírez Ramírez's wiki page.

José Luis Ramírez Ramírez has authored 30 sequences. Here are the ten most recent ones:

A322378 Triangle read by rows: T(n,k) is the number of nondecreasing Dyck prefixes (i.e., left factors of nondecreasing Dyck paths) of length n and final height k (0 <= k <= n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 3, 0, 1, 0, 5, 0, 4, 0, 1, 5, 0, 9, 0, 5, 0, 1, 0, 13, 0, 14, 0, 6, 0, 1, 13, 0, 26, 0, 20, 0, 7, 0, 1, 0, 34, 0, 45, 0, 27, 0, 8, 0, 1, 34, 0, 73, 0, 71, 0, 35, 0, 9, 0, 1, 0, 89, 0, 137, 0, 105, 0, 44, 0, 10, 0, 1, 89, 0, 201, 0, 234, 0, 148, 0, 54, 0, 11, 0, 1, 0, 233, 0, 402, 0, 373, 0, 201, 0, 65, 0, 12, 0, 1, 233, 0, 546, 0, 733, 0, 564, 0, 265, 0, 77, 0, 13, 0, 1, 0, 610, 0, 1149, 0, 1245, 0, 818, 0, 341, 0, 90, 0, 14, 0, 1
Offset: 0

Author

Keywords

Examples

			Triangle begins:
   1;
   0,   1;
   1,   0,   1;
   0,   2,   0,   1;
   2,   0,   3,   0,   1;
   0,   5,   0,   4,   0,   1;
   5,   0,   9,   0,   5,   0,   1;
   0,  13,   0,  14,   0,   6,   0,   1;
  13,   0,  26,   0,  20,   0,   7,   0,   1;
   0,  34,   0,  45,   0,  27,   0,   8,   0,   1;
  34,   0,  73,   0,  71,   0,  35,   0,   9,   0,   1;
   0,  89,   0, 137,   0, 105,   0,  44,   0,  10,   0,   1;
  89,   0, 201,   0, 234,   0, 148,   0,  54,   0,  11,   0,   1;
   0, 233,   0, 402,   0, 373,   0, 201,   0,  65,   0,  12,   0,   1;
  ...
		

Crossrefs

Columns k=0, 1 give A001519. Column k=2 gives A061667.

Formula

Riordan array: ((1 - 2*x^2)/(1 - 3*x^2 + x^4), (x*(1-x^2))/(1 - 2*x^2)).

A322329 Triangle read by rows: T(n,k) is the number of nondecreasing Motzkin prefixes (i.e., left factors of nondecreasing Motzkin paths) of length n and final height k (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 9, 12, 9, 4, 1, 21, 30, 25, 14, 5, 1, 49, 74, 69, 44, 20, 6, 1, 115, 182, 185, 133, 70, 27, 7, 1, 269, 444, 488, 386, 230, 104, 35, 8, 1, 630, 1078, 1266, 1090, 718, 369, 147, 44, 9, 1, 1474, 2605, 3245, 3006, 2161, 1232, 560, 200, 54, 10, 1
Offset: 0

Author

Keywords

Examples

			Triangle begins:
     1;
     1,    1;
     2,    2,    1;
     4,    5,    3,    1;
     9,   12,    9,    4,    1;
    21,   30,   25,   14,    5,    1;
    49,   74,   69,   44,   20,    6,   1;
   115,  182,  185,  133,   70,   27,   7,   1;
   269,  444,  488,  386,  230,  104,  35,   8,  1;
   630, 1078, 1266, 1090,  718,  369, 147,  44,  9,  1;
  1474, 2605, 3245, 3006, 2161, 1232, 560, 200, 54, 10, 1;
  ...
		

Crossrefs

Column k=0 gives A322325.

Formula

Riordan array: ((1 - x - 2*x^2 + x^3)/(1 - 2*x - 2*x^2 + 3x^3 - x^5),(x*(1-x)^2*(1+x))/(1 - 2*x - x^2 + 2*x^3 - x^4)).

A322325 Number of nondecreasing Motzkin paths of length n.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 49, 115, 269, 630, 1474, 3450, 8073, 18893, 44212, 103465, 242125, 566617, 1325982, 3103035, 7261648, 16993545, 39767898, 93063924, 217786044, 509657890, 1192689641, 2791104828, 6531679192, 15285285161, 35770272112, 83708766611, 195893326791
Offset: 0

Author

Keywords

Examples

			For n=6 we have 49 paths. Among the A001006(6) = 51 Motzkin paths, the following two paths are not nondecreasing Motzkin paths: UHUDDH and UUDHDH.
		

Crossrefs

Column k=0 of A322329.

Programs

  • Mathematica
    LinearRecurrence[{2, 2, -3, 0, 1}, {1, 1, 2, 4, 9}, 40] (* Amiram Eldar, Dec 03 2018 *)

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3) + a(n-5), a(0)=1, a(1)=1, a(2)=2, a(3)=4, a(4)=9.
G.f.: (x^3 - 2*x^2 - x + 1)/(1 - 2*x - 2*x^2 + 3*x^3 - x^5).

A253831 Number of 2-Motzkin paths with no level steps at height 1.

Original entry on oeis.org

1, 2, 5, 12, 30, 76, 197, 522, 1418, 3956, 11354, 33554, 102104, 319608, 1027237, 3381714, 11371366, 38946892, 135505958, 477781296, 1703671604, 6132978608, 22256615602, 81327116484, 298938112816, 1104473254912, 4098996843500, 15272792557230, 57106723430892, 214202598271360, 805743355591301
Offset: 0

Author

Keywords

Comments

For n=3 we have 12 paths: H(1)H(1)H(1), H(1)H(1)H(2), H(1)H(2)H(1), H(1)H(2)H(2), H(2)H(1)H(1), H(2)H(1)H(2), H(2)H(2)H(1), H(2)H(2)H(2), UDH(1), UDH(2), H(1)UD, H(2)UD.

Crossrefs

Programs

  • Maple
    rec:= (54+36*n)*a(n)+(-3+7*n)*a(n+1)+(-60-36*n)*a(n+2)+(36+16*n)*a(n+3)+(-6-2*n)*a(n+4) = 0:
    f:= gfun:-rectoproc({rec,seq(a(i)=[1,2,5,12][i+1],i=0..3)},a(n),remember):
    seq(f(n),n=0..100); # Robert Israel, Apr 29 2015
  • Mathematica
    CoefficientList[Series[1/(1-2*x-x*((1-Sqrt[1-4*x])/(3-Sqrt[1-4*x]))), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 21 2015 *)
  • Maxima
    a(n):=sum(sum(((sum((k+1)*binomial(k+m,k+1)*binomial(2*j-k+m-1,j-k)*(-1)^(k),k,0,j))*2^(n-j-2*m)*binomial(n-m-j,m))/(j+m),j,0,n-2*m),m,1,n/2)+2^n; /* Vladimir Kruchinin, Mar 11 2016 */

Formula

G.f.: 1/(1-2*x-x*F(x)), where F(x) is the g.f. of Fine numbers A000957.
G.f.: 2*(2+x)/(4-7*x-6*x^2+x*sqrt(1-4*x)).
a(n) ~ 4^(n+1) / (25*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 21 2015
(54+36*n)*a(n)+(-3+7*n)*a(n+1)+(-60-36*n)*a(n+2)+(36+16*n)*a(n+3)+(-6-2*n)*a(n+4) = 0. - Robert Israel, Apr 29 2015
a(n) = Sum_{m=1..n/2}(Sum_{j=0..n-2*m}(((Sum_{k=0..j}((k+1)*binomial(k+m,k+1)*binomial(2*j-k+m-1,j-k)*(-1)^(k)))*2^(n-j-2*m)*binomial(n-m-j,m))/(j+m)))+2^n. - Vladimir Kruchinin, Mar 11 2016

A257390 Number of 4-Motzkin paths of length n with no level steps at even level.

Original entry on oeis.org

1, 0, 1, 4, 18, 80, 357, 1596, 7150, 32096, 144362, 650568, 2937316, 13286368, 60205805, 273290988, 1242639446, 5659468736, 25816338046, 117945079736, 539646216188, 2472638868960, 11345220210658, 52124831171544, 239792244636876, 1104495824173376
Offset: 0

Author

Keywords

Crossrefs

Programs

  • Maple
    rec:= a(n) = ((-16*n + 40)*a(n-3) + (-12*n+12)*a(n-2) +(8*n+4)*a(n-1))/(n+2):
    f:= gfun:-rectoproc({rec,a(0)=1,a(1)=0,a(2)=1},a(n),remember):
    seq(f(i),i=0..100); # Robert Israel, Apr 22 2015
  • Mathematica
    CoefficientList[Series[(1-4*x-Sqrt[(1-4*x)*(1-4*x-4*x^2)])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 22 2015 *)
  • PARI
    x='x+O('x^50); Vec((1-4*x-sqrt((1-4*x)*(1-4*x-4*x^2)))/(2*x^2)) \\ G. C. Greubel, Apr 08 2017

Formula

a(n) = Sum_{i=0..floor(n/2)}4^(n-2i)*C(i)*binomial(n-i-1,n), where C(i) is the i-th Catalan number A000108.
G.f.: (1-4*x-sqrt((1-4*x)*(1-4*x-4*x^2)))/(2*x^2).
a(n) ~ 2^(n+3/4) * (1+sqrt(2))^(n+1/2) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 22 2015
a(n) = ((-16*n + 40)*a(n-3) + (-12*n+12)*a(n-2) +(8*n+4)*a(n-1))/(n+2). - Robert Israel, Apr 22 2015

A257515 Number of 3-generalized 2-Motzkin paths of length n with no level steps H=(3,0) at odd level.

Original entry on oeis.org

1, 0, 1, 2, 2, 4, 9, 12, 26, 48, 90, 172, 348, 664, 1349, 2680, 5438, 10976, 22510, 45900, 94700, 195032, 404442, 838824, 1748308, 3646368, 7632628, 15994232, 33606168, 70699504, 149050669, 314625264, 665280246, 1408436672, 2986069782, 6337988876
Offset: 0

Author

Keywords

Examples

			For n=6 we have 9 paths: UDUDUD, H3H3 (4 options), UUDUDD, UUUDDD, UDUUDD and UUDDUD, where H3=(3,0).
		

Programs

  • Mathematica
    CoefficientList[Series[(1-2*x^3-Sqrt[(1-2x^3)*(1-4*x^2-2*x^3)])/(2*x^2*(1-2*x^3)), {x, 0, 30}], x] (* Vaclav Kotesovec, Apr 28 2015 *)
  • Maxima
    a(n):=sum((binomial(2*m,m)/(m+1)*(if mod(n+m,3)=0 then 2^((n-2*m)/3)* binomial((m+n)/3,m) else 0)),m,0,n); /* Vladimir Kruchinin, Mar 07 2016 */
    
  • PARI
    seq(n)={Vec((1-2*x^3-sqrt((1-2*x^3)*(1-4*x^2-2*x^3) + O(x^(3+n))))/(2*x^2*(1-2*x^3)))} \\ Andrew Howroyd, May 01 2020

Formula

G.f.: (1-2*x^3-sqrt((1-2x^3)*(1-4*x^2-2*x^3)))/(2*x^2*(1-2*x^3)).
Conjecture: (n+2)*a(n) +(n+1)*a(n-1) +(n+4)*a(n-2) +4*(-2*n+3)*a(n-3) +4*(-6*n+17)*a(n-4) +4*(-3*n+10)*a(n-5) +4*(3*n-11)*a(n-6) +4*(11*n-50)*a(n-7) +20*(n-6)*a(n-8)=0. - R. J. Mathar, Jun 07 2016

Extensions

Terms a(31) and beyond from Andrew Howroyd, May 01 2020

A257363 Number of 3-Motzkin paths with no level steps at height 1.

Original entry on oeis.org

1, 3, 10, 33, 110, 369, 1247, 4248, 14603, 50724, 178314, 635526, 2300829, 8477382, 31842897, 122103276, 478372886, 1915188093, 7831613468, 32674683984, 138871668314, 600140517762, 2631926843602, 11690520554421, 52498671870181, 237966449687118, 1087246253873875, 5001141997115010, 23137102115963262
Offset: 0

Author

Keywords

Comments

For n=2 we have 10 paths: H(1)H(1), H(1)H(2), H(2)H(1), H(2)H(2), H(1)H(3), H(3)H(1), H(3)H(3), H(2)H(3), H(3)H(2), UD.

Crossrefs

Programs

  • Maple
    rec:= (95+95*n)*a(n)+(-180-9*n)*a(n+1)+(-329-197*n)*a(n+2)+(369+144*n)*a(n+3)+(-117-36*n)*a(4+n)+(12+3*n)*a(n+5):
    f:= gfun:-rectoproc({rec,a(0)=1,a(1)=3,a(2)=10,a(3)=33,a(4)=110},a(n),remember):
    seq(f(n),n=0..100); # Robert Israel, Apr 28 2015
  • Mathematica
    CoefficientList[Series[2*(3+x)/(6-17*x-9*x^2+x*Sqrt[1-6*x+5*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 21 2015 *)

Formula

G.f.: 1/(1-3*x-x*F(x)), where F(x) is the g.f. of the sequence A117641.
G.f.: 2*(3+x)/(6-17*x-9*x^2+x*sqrt(1-6*x+5*x^2)).
a(n) ~ 5^(n+3/2)/(98*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 21 2015
From Robert Israel, Apr 28 2015 (Start):
G.f.: (6-x*sqrt(1-6*x+5*x^2)-17*x-9*x^2)/(6-36*x+42*x^2+38*x^3).
3*(-n+1)*a(n) +9*(4*n-7)*a(n-1) +9*(-16*n+39)*a(n-2) +(197*n-656)*a(n-3) +9*(n+15)*a(n-4) +95*(-n+4)*a(n-5)=0. (End)

A257517 Number of 3-generalized 2-Motzkin paths of length n with no level steps H=(3,0) at even level.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 5, 8, 18, 30, 66, 120, 252, 484, 1005, 1984, 4110, 8278, 17150, 35024, 72748, 150012, 312642, 649424, 1358244, 2837484, 5954980, 12497616, 26313432, 55434248, 117062205, 247412928, 523881238, 1110335334, 2356819254, 5007428384, 10652412108, 22682131308, 48349084054, 103150869360, 220276819836
Offset: 0

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-2*x^3-Sqrt[(1-2*x^3)*(1-4*x^2-2*x^3)])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 27 2015 *)

Formula

G.f.: (1-2*x^3-sqrt((1-2*x^3)*(1-4*x^2-2*x^3)))/(2*x^2).
D-finite with recurrence +(n+2)*(n^2-n+3)*a(n) +(n+1)*(n^2+1)*a(n-1) -4*(n-1)*(n^2-n+3)*a(n-2) +2*(-4*n^3+11*n^2-13*n+19)*a(n-3) -2*(2*n-7)*(n^2+1)*a(n-4) +4*(2*n-11)*(n^2-n+3)*a(n-5) +4*(3*n^3-21*n^2+12*n-34)*a(n-6) +4*(n-8)*(n^2+1)*a(n-7)=0. - R. J. Mathar, Jun 07 2016

A257388 Number of 4-Motzkin paths of length n with no level steps at odd level.

Original entry on oeis.org

1, 4, 17, 72, 306, 1304, 5573, 23888, 102702, 442904, 1915978, 8314480, 36195236, 158067312, 692475053, 3043191200, 13415404246, 59321085720, 263100680926, 1170347803440, 5221037429948, 23356788588752, 104772374565666, 471214329434208, 2124649562373708, 9603094073668208
Offset: 0

Author

Keywords

Examples

			For n=2 we have 17 paths: H(1)H(1), H(1)H(2), H(1)H(3), H(1)H(4), H(2)H(1), H(2)H(2), H(2)H(3), H(2)H(4), H(3)H(1), H(3)H(2), H(3)H(3), H(3)H(4), H(4)H(1), H(4)H(2), H(4)H(3), H(4)H(4) and UD.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-4*x-Sqrt[(1-4*x)*(1-4*x-4*x^2)])/(2*x^2*(1-4*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 22 2015 *)
  • PARI
    x='x+O('x^50); Vec((1-4*x-sqrt((1-4*x)*(1-4*x-4*x^2)))/(2*x^2*(1-4*x))) \\ G. C. Greubel, Apr 08 2017

Formula

a(n) = Sum_{i=0..floor(n/2)}4^(n-2i)*C(i)*binomial(n-i,i), where C(n) is the n-th Catalan number A000108.
G.f.: (1-4*x-sqrt((1-4*x)*(1-4*x-4*x^2)))/(2*x^2*(1-4*x)).
a(n) ~ sqrt(58+41*sqrt(2)) * 2^(n+1/2) * (1+sqrt(2))^n / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 22 2015
Conjecture: (n+2)*a(n) +8*(-n-1)*a(n-1) +4*(3*n+1)*a(n-2) +8*(2*n-3)*a(n-3)=0. - R. J. Mathar, Sep 24 2016
G.f. A(x) satisfies: A(x) = 1/(1 - 4*x) + x^2 * A(x)^2. - Ilya Gutkovskiy, Jun 30 2020

A252354 Number of Motzkin paths of length n with no level steps at height 2.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 46, 106, 248, 584, 1389, 3329, 8047, 19607, 48167, 119287, 297829, 749632, 1902044, 4864553, 12538933, 32568528, 85224251, 224618900, 596106393, 1592429464, 4280667705, 11575188106, 31474407317, 86029586086, 236292044931, 651952466845
Offset: 0

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x-x^2(1/(1-x-x^2*(1+x-Sqrt[1-2*x-3*x^2])/(2*x*(1+x))))), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 21 2015 *)
  • PARI
    x='x + O('x^50); Vec(1/(1-x-x^2*(1/(1-x-x^2*(1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)))))) \\ G. C. Greubel, Feb 14 2017

Formula

a(n) = a(n-1) + Sum_{j=0..n-2} A217312(j)*a(n-j).
G.f: 1/(1-x-x^2(1/(1-x-x^2*R(x)))), where R(x) is the g.f. of Riordan numbers (A005043).
a(n) ~ 3^(n+3/2) / (32*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 21 2015
Conjecture: (-n+3)*a(n) +3*(2*n-7)*a(n-1) +(-7*n+24)*a(n-2) +2*(-7*n+36)*a(n-3) +2*(11*n-51)*a(n-4) +3*(3*n-23)*a(n-5) +(-10*n+63)*a(n-6) +3*(n-6)*a(n-7)=0. - R. J. Mathar, Sep 24 2016