cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A257386 Number of Motzkin paths of length n with no level steps at height 3.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 51, 126, 316, 799, 2034, 5202, 13357, 34407, 88888, 230237, 597829, 1555962, 4058944, 10612102, 27807135, 73025751, 192204957, 507025163, 1340545113, 3552492126
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1+x-Sqrt[1-2*x-3*x^2])/(2*x*(1+x))))))), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 24 2015 *)
  • PARI
    x='x+O('x^50); Vec(1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)))))))) \\ G. C. Greubel, Apr 08 2017

Formula

a(n) = a(n-1) + Sum_{j=0..n-2} A252354(j)*a(n-j).
G.f: 1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*R(x)))))), where R(x) is the g.f. of Riordan numbers (A005043).
a(n) ~ 3^(n+3/2)/(50*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 24 2015

A257387 Number of Motzkin paths of length n with no level steps at height 4.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 51, 127, 323, 834, 2179, 5743, 15238, 40637, 108800, 292200, 786703, 2122387, 5735596, 15522682, 42064028, 114117541, 309918698, 842489130, 2292332265, 6242655886
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1+x-Sqrt[1-2*x-3*x^2])/(2*x*(1+x))))))))), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 24 2015 *)
  • PARI
    x='x+O('x^50); Vec(1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)))))))))) \\ G. C. Greubel, Jun 03 2017

Formula

a(n) = a(n-1) + Sum_{j=0..n-2} A257386(j)*a(n-j).
G.f: 1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*(1/(1-x-x^2*R(x)))))))), where R(x) is the g.f. of Riordan numbers (A005043).
a(n) ~ 3^(n+1/2)/(24*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 24 2015
Showing 1-2 of 2 results.