cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A322325 Number of nondecreasing Motzkin paths of length n.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 49, 115, 269, 630, 1474, 3450, 8073, 18893, 44212, 103465, 242125, 566617, 1325982, 3103035, 7261648, 16993545, 39767898, 93063924, 217786044, 509657890, 1192689641, 2791104828, 6531679192, 15285285161, 35770272112, 83708766611, 195893326791
Offset: 0

Views

Author

Keywords

Examples

			For n=6 we have 49 paths. Among the A001006(6) = 51 Motzkin paths, the following two paths are not nondecreasing Motzkin paths: UHUDDH and UUDHDH.
		

Crossrefs

Column k=0 of A322329.

Programs

  • Mathematica
    LinearRecurrence[{2, 2, -3, 0, 1}, {1, 1, 2, 4, 9}, 40] (* Amiram Eldar, Dec 03 2018 *)

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3) + a(n-5), a(0)=1, a(1)=1, a(2)=2, a(3)=4, a(4)=9.
G.f.: (x^3 - 2*x^2 - x + 1)/(1 - 2*x - 2*x^2 + 3*x^3 - x^5).

A322378 Triangle read by rows: T(n,k) is the number of nondecreasing Dyck prefixes (i.e., left factors of nondecreasing Dyck paths) of length n and final height k (0 <= k <= n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 3, 0, 1, 0, 5, 0, 4, 0, 1, 5, 0, 9, 0, 5, 0, 1, 0, 13, 0, 14, 0, 6, 0, 1, 13, 0, 26, 0, 20, 0, 7, 0, 1, 0, 34, 0, 45, 0, 27, 0, 8, 0, 1, 34, 0, 73, 0, 71, 0, 35, 0, 9, 0, 1, 0, 89, 0, 137, 0, 105, 0, 44, 0, 10, 0, 1, 89, 0, 201, 0, 234, 0, 148, 0, 54, 0, 11, 0, 1, 0, 233, 0, 402, 0, 373, 0, 201, 0, 65, 0, 12, 0, 1, 233, 0, 546, 0, 733, 0, 564, 0, 265, 0, 77, 0, 13, 0, 1, 0, 610, 0, 1149, 0, 1245, 0, 818, 0, 341, 0, 90, 0, 14, 0, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
   1;
   0,   1;
   1,   0,   1;
   0,   2,   0,   1;
   2,   0,   3,   0,   1;
   0,   5,   0,   4,   0,   1;
   5,   0,   9,   0,   5,   0,   1;
   0,  13,   0,  14,   0,   6,   0,   1;
  13,   0,  26,   0,  20,   0,   7,   0,   1;
   0,  34,   0,  45,   0,  27,   0,   8,   0,   1;
  34,   0,  73,   0,  71,   0,  35,   0,   9,   0,   1;
   0,  89,   0, 137,   0, 105,   0,  44,   0,  10,   0,   1;
  89,   0, 201,   0, 234,   0, 148,   0,  54,   0,  11,   0,   1;
   0, 233,   0, 402,   0, 373,   0, 201,   0,  65,   0,  12,   0,   1;
  ...
		

Crossrefs

Columns k=0, 1 give A001519. Column k=2 gives A061667.

Formula

Riordan array: ((1 - 2*x^2)/(1 - 3*x^2 + x^4), (x*(1-x^2))/(1 - 2*x^2)).
Showing 1-2 of 2 results.