cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A322329 Triangle read by rows: T(n,k) is the number of nondecreasing Motzkin prefixes (i.e., left factors of nondecreasing Motzkin paths) of length n and final height k (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 9, 12, 9, 4, 1, 21, 30, 25, 14, 5, 1, 49, 74, 69, 44, 20, 6, 1, 115, 182, 185, 133, 70, 27, 7, 1, 269, 444, 488, 386, 230, 104, 35, 8, 1, 630, 1078, 1266, 1090, 718, 369, 147, 44, 9, 1, 1474, 2605, 3245, 3006, 2161, 1232, 560, 200, 54, 10, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
     1;
     1,    1;
     2,    2,    1;
     4,    5,    3,    1;
     9,   12,    9,    4,    1;
    21,   30,   25,   14,    5,    1;
    49,   74,   69,   44,   20,    6,   1;
   115,  182,  185,  133,   70,   27,   7,   1;
   269,  444,  488,  386,  230,  104,  35,   8,  1;
   630, 1078, 1266, 1090,  718,  369, 147,  44,  9,  1;
  1474, 2605, 3245, 3006, 2161, 1232, 560, 200, 54, 10, 1;
  ...
		

Crossrefs

Column k=0 gives A322325.

Formula

Riordan array: ((1 - x - 2*x^2 + x^3)/(1 - 2*x - 2*x^2 + 3x^3 - x^5),(x*(1-x)^2*(1+x))/(1 - 2*x - x^2 + 2*x^3 - x^4)).

A322378 Triangle read by rows: T(n,k) is the number of nondecreasing Dyck prefixes (i.e., left factors of nondecreasing Dyck paths) of length n and final height k (0 <= k <= n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 3, 0, 1, 0, 5, 0, 4, 0, 1, 5, 0, 9, 0, 5, 0, 1, 0, 13, 0, 14, 0, 6, 0, 1, 13, 0, 26, 0, 20, 0, 7, 0, 1, 0, 34, 0, 45, 0, 27, 0, 8, 0, 1, 34, 0, 73, 0, 71, 0, 35, 0, 9, 0, 1, 0, 89, 0, 137, 0, 105, 0, 44, 0, 10, 0, 1, 89, 0, 201, 0, 234, 0, 148, 0, 54, 0, 11, 0, 1, 0, 233, 0, 402, 0, 373, 0, 201, 0, 65, 0, 12, 0, 1, 233, 0, 546, 0, 733, 0, 564, 0, 265, 0, 77, 0, 13, 0, 1, 0, 610, 0, 1149, 0, 1245, 0, 818, 0, 341, 0, 90, 0, 14, 0, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
   1;
   0,   1;
   1,   0,   1;
   0,   2,   0,   1;
   2,   0,   3,   0,   1;
   0,   5,   0,   4,   0,   1;
   5,   0,   9,   0,   5,   0,   1;
   0,  13,   0,  14,   0,   6,   0,   1;
  13,   0,  26,   0,  20,   0,   7,   0,   1;
   0,  34,   0,  45,   0,  27,   0,   8,   0,   1;
  34,   0,  73,   0,  71,   0,  35,   0,   9,   0,   1;
   0,  89,   0, 137,   0, 105,   0,  44,   0,  10,   0,   1;
  89,   0, 201,   0, 234,   0, 148,   0,  54,   0,  11,   0,   1;
   0, 233,   0, 402,   0, 373,   0, 201,   0,  65,   0,  12,   0,   1;
  ...
		

Crossrefs

Columns k=0, 1 give A001519. Column k=2 gives A061667.

Formula

Riordan array: ((1 - 2*x^2)/(1 - 3*x^2 + x^4), (x*(1-x^2))/(1 - 2*x^2)).
Showing 1-2 of 2 results.