cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A354734 a(0) = a(1) = 1; a(n) = 3 * Sum_{k=0..n-2} a(k) * a(n-k-2).

Original entry on oeis.org

1, 1, 3, 6, 21, 54, 189, 558, 1944, 6210, 21681, 72576, 254988, 878850, 3112101, 10935000, 39030660, 139001346, 499808232, 1797731496, 6506661798, 23583173328, 85847830965, 313063862436, 1145325387114, 4197826175634, 15424343762184, 56774049331356, 209400739623054
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = 3 Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 28}]
    nmax = 28; CoefficientList[Series[(1 - Sqrt[1 - 12 x^2 (1 + x)])/(6 x^2), {x, 0, nmax}], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x + 3 * (x * A(x))^2.
G.f.: (1 - sqrt(1 - 12 * x^2 * (1 + x))) / (6 * x^2).
a(n) ~ sqrt((2+3*r)*(1+r)) / (sqrt(Pi) * n^(3/2) * r^n), where r = 2*cos(arccos(1/8)/3)/3 - 1/3. - Vaclav Kotesovec, Jun 04 2022

A354735 a(0) = a(1) = 1; a(n) = 4 * Sum_{k=0..n-2} a(k) * a(n-k-2).

Original entry on oeis.org

1, 1, 4, 8, 36, 96, 416, 1312, 5504, 19200, 79168, 293888, 1203712, 4648448, 19027968, 75411456, 309487616, 1248411648, 5144133632, 21011775488, 86971449344, 358540509184, 1490753372160, 6189315784704, 25843660619776, 107902536122368, 452308820819968, 1897178275512320
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = 4 Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 27}]
    nmax = 27; CoefficientList[Series[(1 - Sqrt[1 - 16 x^2 (1 + x)])/(8 x^2), {x, 0, nmax}], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x + 4 * (x * A(x))^2.
G.f.: (1 - sqrt(1 - 16 * x^2 * (1 + x))) / (8 * x^2).
a(n) ~ sqrt((2+3*r)*(1+r)) / (sqrt(Pi) * n^(3/2) * r^n), where r = 2*cos(arccos(-5/32)/3)/3 - 1/3. - Vaclav Kotesovec, Jun 04 2022

A354736 a(0) = a(1) = 1; a(n) = 5 * Sum_{k=0..n-2} a(k) * a(n-k-2).

Original entry on oeis.org

1, 1, 5, 10, 55, 150, 775, 2550, 12500, 46250, 219375, 875000, 4075000, 17071250, 78796875, 341100000, 1569350000, 6947531250, 31966000000, 143761750000, 662668906250, 3014440000000, 13932834296875, 63921914062500, 296358191406250, 1368603488281250, 6365085546875000
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = 5 Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 26}]
    nmax = 26; CoefficientList[Series[(1 - Sqrt[1 - 20 x^2 (1 + x)])/(10 x^2), {x, 0, nmax}], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + x + 5 * (x * A(x))^2.
G.f.: (1 - sqrt(1 - 20 * x^2 * (1 + x))) / (10 * x^2).
a(n) ~ sqrt((2+3*r)*(1+r)) / (sqrt(Pi) * n^(3/2) * r^n), where r = 2*cos(arccos(-13/40)/3)/3 - 1/3. - Vaclav Kotesovec, Jun 04 2022

A367071 G.f. satisfies A(x) = 1 + 2*x + 2*x^2*A(x)^2.

Original entry on oeis.org

1, 2, 2, 8, 16, 48, 136, 384, 1184, 3520, 10944, 34048, 107008, 340480, 1087104, 3502080, 11333120, 36867072, 120491008, 395276288, 1301700608, 4300414976, 14250496000, 47353233408, 157747462144, 526740717568, 1762653863936, 5910312910848
Offset: 0

Views

Author

Seiichi Manyama, Nov 05 2023

Keywords

Crossrefs

Programs

  • Maple
    A367071 := proc(n)
        add(2^(n-k) * binomial(k+1,n-2*k) * A000108(k),k=0..floor(n/2)) ;
    end proc:
    seq(A367071(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
  • PARI
    a(n) = sum(k=0, n\2, 2^(n-k)*binomial(k+1, n-2*k)*binomial(2*k, k)/(k+1));

Formula

G.f.: A(x) = 2*(1+2*x) / (1+sqrt(1-8*x^2*(1+2*x))).
a(n) = Sum_{k=0..floor(n/2)} 2^(n-k) * binomial(k+1,n-2*k) * A000108(k).
D-finite with recurrence (n+2)*a(n) +8*(-n+1)*a(n-2) +8*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Dec 04 2023
Showing 1-4 of 4 results.