cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Luis Manuel Rivera Martínez

Luis Manuel Rivera Martínez's wiki page.

Luis Manuel Rivera Martínez has authored 4 sequences.

A326241 Number of degree-n even permutations of order dividing 12.

Original entry on oeis.org

1, 1, 1, 3, 12, 36, 216, 1296, 10368, 78912, 634896, 5572656, 51817536, 477672768, 8268884352, 101752505856, 1417554660096, 20985416983296, 344834432195328, 5096129755468032, 70148917686998016
Offset: 0

Author

Keywords

Examples

			For n=3 the a(3)=3 solutions are (1), (1, 2, 3), (1, 3, 2) (permutations in cyclic notation).
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc. New York, 1958 (Chap 4, Problem 22).

Programs

  • Maple
    E:= (1/2)*exp(x + (1/2)*x^2 + (1/3)*x^3 + (1/4)*x^4 + (1/6)*x^6+(1/12)*x^(12)) + (1/2)*exp(x - (1/2)*x^2 + (1/3)*x^3 - (1/4)*x^4 - (1/6)*x^6-(1/12)*x^(12)):
    S:= series(E,x,31):
    seq(coeff(S,x,i)*i!,i=0..30);# Robert Israel, Jul 08 2019
  • Mathematica
    With[{nn = 22}, CoefficientList[Series[1/2 Exp[x + x^2/2 + x^3/3 + x^4/4 + x^6/6 +x^12/12]+1/2 Exp[x - x^2/2 + x^3/3 - x^4/4 - x^6/6 - x^12/12], {x, 0, nn}], x]*Range[0, nn]!]

Formula

E.g.f.: (1/2)*exp(x + (1/2)*x^2 + (1/3)*x^3 + (1/4)*x^4 + (1/6)*x^6+(1/12)*x^(12)) + (1/2)*exp(x - (1/2)*x^2 + (1/3)*x^3 - (1/4)*x^4 - (1/6)*x^6-(1/12)*x^(12)).

A326242 Number of degree-n odd permutations of order dividing 12.

Original entry on oeis.org

0, 0, 1, 3, 12, 60, 360, 2016, 11088, 73872, 602640, 4411440, 81677376, 934435008, 8100473472, 104370819840, 1448725616640, 15823660179456, 247231858514688, 3703908371910912, 66727356304757760, 1124506454958351360, 19305439846610835456
Offset: 0

Author

Keywords

Examples

			For n=3 the a(3)=3 solutions are (1, 2), (2, 3), (1, 3) (permutations in cyclic notation).
		

Programs

  • Maple
    E:= (1/2)*exp(x + (1/2)*x^2 + (1/3)*x^3 + (1/4)*x^4 + (1/6)*x^6+(1/12)*x^(12)) - (1/2)*exp(x - (1/2)*x^2 + (1/3)*x^3 - (1/4)*x^4 - (1/6)*x^6-(1/12)*x^(12)):
    S:= series(E,x,31):
    seq(coeff(S,x,i)*i!,i=0..30); # Robert Israel, Jul 08 2019
  • Mathematica
    With[{nn = 22}, CoefficientList[Series[1/2 Exp[x + x^2/2 + x^3/3 + x^4/4 + x^6/6 +x^12/12]-1/2 Exp[x - x^2/2 + x^3/3 - x^4/4 - x^6/6 - x^12/12], {x, 0, nn}], x]*Range[0, nn]!]

Formula

E.g.f.: (1/2)*exp(x + (1/2)*x^2 + (1/3)*x^3 + (1/4)*x^4 + (1/6)*x^6+(1/12)*x^(12)) - (1/2)*exp(x - (1/2)*x^2 + (1/3)*x^3 - (1/4)*x^4 - (1/6)*x^6-(1/12)*x^(12)).

A308648 Number of degree-n odd permutations of order dividing 8.

Original entry on oeis.org

0, 0, 1, 3, 12, 40, 120, 336, 7168, 58752, 345600, 1682560, 15983616, 142192128, 2318697472, 25614382080, 282753361920, 2645093410816, 48869743454208, 674729909839872, 12153962014842880, 167314499427532800, 1986101341059956736, 20335611320801886208
Offset: 0

Author

Keywords

Examples

			For n=3 the a(3)=3 solutions are (1, 2), (1, 3), (2, 3) (permutations in cyclic notation).
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 22},
    CoefficientList[Series[1/2 Exp[x + x^2/2 + x^4/4 + x^8/8] - 1/2 Exp[x - x^2/2 - x^4/4 - x^8/8], {x, 0, nn}], x]*Range[0, nn]!]

Formula

E.g.f.: (1/2)*exp(x + (1/2)*x^2 + (1/4)*x^4 + (1/8)*x^8) - (1/2)*exp(x - (1/2)*x^2 -(1/4)*x^4 - (1/8)*x^8).

A233440 Triangle read by rows: T(n, k) = n*binomial(n, k)*A000757(k), 0 <= k <= n.

Original entry on oeis.org

0, 1, 0, 2, 0, 0, 3, 0, 0, 3, 4, 0, 0, 16, 4, 5, 0, 0, 50, 25, 40, 6, 0, 0, 120, 90, 288, 216, 7, 0, 0, 245, 245, 1176, 1764, 1603, 8, 0, 0, 448, 560, 3584, 8064, 14656, 13000, 9, 0, 0, 756, 1134, 9072, 27216, 74196, 131625, 118872, 10, 0, 0, 1200, 2100, 20160, 75600, 274800, 731250, 1320800, 1202880
Offset: 0

Author

Keywords

Comments

For n >= 0, 0 <= k <= n, T(n, k) is the number of permutations of n symbols that k-commute with an n-cycle (we say that two permutations f and g k-commute if H(fg, gf) = k, where H(, ) denotes the Hamming distance between permutations).
Row sums give A000142.

Examples

			For n = 4 and k = 4, T(4, 4) = 4 because all the permutations of 4 symbols that 4-commute with permutation (1, 2, 3, 4) are (1, 3), (2, 4), (1, 2)(3, 4) and (1, 4)(2, 3).
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := n Binomial[n, k] ((-1)^k+Sum[(-1)^j k!/(k-j)/j!, {j, 0, k-1}]);
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 03 2018 *)

Formula

T(n,k) = n*C(n,k)*A000757(k), 0 <= k <= n.
Bivariate e.g.f.: G(z, u) = z*exp(z*(1-u))*(u/(1-z*u)+(1-log(1-z*u))*(1-u)).
T(n, 0) = A001477(n), n>=0;
T(n, 1) = A000004(n), n>=1;
T(n, 2) = A000004(n), n>=2;
T(n, 3) = A004320(n-2), n>=3;
T(n, 4) = A027764(n-1), n>=4;
T(n, 5) = A027765(n-1)*A000757(5), n>=5;
T(n, 6) = A027766(n-1)*A000757(6), n>=6;
T(n, 7) = A027767(n-1)*A000757(7), n>=7;
T(n, 8) = A027768(n-1)*A000757(8), n>=8;
T(n, 9) = A027769(n-1)*A000757(9), n>=9;
T(n, 10) = A027770(n-1)*A000757(10), n>=10;
T(n, 11) = A027771(n-1)*A000757(11), n>=11;
T(n, 12) = A027772(n-1)*A000757(12), n>=12;
T(n, 13) = A027773(n-1)*A000757(13), n>=13;
T(n, 14) = A027774(n-1)*A000757(14), n>=14;
T(n, 15) = A027775(n-1)*A000757(15), n>=15;
T(n, 16) = A027776(n-1)*A000757(16), n>=16. - Luis Manuel Rivera Martínez, Feb 08 2014
T(n, 0)+T(n, 3) = n*A050407(n+1), for n>=0. - Luis Manuel Rivera Martínez, Mar 06 2014